几十年数学难题被谷歌研究员意外突破!曾因不想搞数学自学编程,当年差点被导师赶出门

新闻 开发
这项开创性成果及幕后历程刚被一些媒体介绍,在Reddit和Hacker News上引来不少网友热议。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

困扰学界几十年的集合难题,竟被圈外人一个月搞定???

是的,你没看错。

当事人Justin Gilmer,毕业已7年,目前是谷歌研究员,于数学界并无名头,连其导师也并不看好他所做的研究,以至于成果发表后——

牛津、普林斯顿等高等学研机构数学家们看到名字,纷纷好奇:

这人谁啊?

不仅身份引人好奇,其破题方法也不按圈内常规路数,个中灵感来自通信祖师爷香农的信息论。

这项开创性成果及幕后历程刚被一些媒体介绍,在Reddit和Hacker News上引来不少网友热议。

图片

有网友表示:看到信息论在意想不到的领域应用,真是酷炸了。

还有网友就着话题,秀了一把自己以信息论解决问题的经历。

图片

所以,这位远离纯数学学术研究的大哥解决了什么问题?又如何在一个月内搞定的?

往下看。

这个猜想究竟是什么?

这位谷歌研究员突破的难题,名叫union-closed sets conjecture(并封闭集合猜想)

该猜想认为,对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。

我们来解读一下这个猜想说的啥。

首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。

例如这是一个我们常见的数集,而且是有限(只包括3个元素)

图片

(至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合)

当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:

图片

在这些集族中,有一类特殊的集族对并运算封闭

对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。

以下面这个集族为例:

图片

无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。

所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。

值得注意的是,这一猜想中的“一半”是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。

它于1979年被一个叫Péter Frankl的数学家提出,所以也一度被叫做Frankl猜想。

看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。

图片
△Peter Winkler

达特茅斯学院数学教授Peter Winkler曾经在1987年就这个猜想给出尖锐的评价:

并封闭集合猜想确实很有名,除了它的起源和它的答案

图片

△对此有同行表示,起源至少没答案难orz

为了解决这个问题,数学家们也已经尝试过不少方法。

例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。

像是将它和图论中的二分图(Bipartite Graph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。

又或是给其中的元素加以限制,再加以证明……

BUT,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。

来自哥伦比亚大学的助理教授Will Sawin对此评价称:

它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”很像。

然而,如今却没有任何一个证明能真正搞定它。

问题就这样进度缓慢,直到2022年秋天,谷歌研究员Justin Gilmer借着朋友结婚的契机,回到了罗格斯大学校园。

用信息论突破了1%

Gilmer回母校的时间是2022年10月,此时距他毕业离开数学学术圈,已过去7年。这些年来,他自觉无心专注纯数学领域,转而自学编程,投身了IT行业。

此次返校,他拜访了导师萨克斯,还四处转了转。

就在散步中,他突然回忆起——当年自己徘徊于校园小径,苦苦思索的一个数学问题:

没错,就是那个对“并封闭集合猜想”的证明。

读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。

为此,他还去找过导师萨克斯。但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。据Gilmer回忆,当时导师差点把他赶出房间。

但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。

图片

△ 信息论奠基人 克劳德・香农

信息论发源于20世纪上半叶,其最为出名的论文是香农在1948年发表的《通信的数学原理》,其中提出以“消除不确定性”的多少,来评价通信过程中的信息量大小。

这个不确定性要怎么理解呢?

以掷硬币游戏为例,假设我们需要掷5次硬币,然后输出结果序列,每次结果为1比特。

如果现在我们抛掷的是一枚普通硬币(正反概率各50%),那么我们至少需要5个比特来传递信息。

但如果给这枚硬币做点手脚(让它正面朝上的概率99%),我们就完全可以提前规定,在硬币5次都是正面朝上时,只用1个比特来传递信息。

这样,被用以衡量文本、图片等内容大小的比特,也能成为描述事件发生不确定性的信息熵单位,而信息论也成为现代通信奠基之作,构建起今日的信息社会。

受到信息论的启发,Gilmer决心下场再战。

此后一个月中,他利用下班后的晚上及周末时间,试探性地进行了摸索。有意思的是,由于长时间未接触理论,他一边研究还一边拿着本信息论教科书,以备随时查阅。

研究过程中,Gilmer还发现自己研究的问题并非无人关心,其实几年前,就有几位数学家在菲尔兹奖得主Tim Gowers博客里探讨过该问题。这让他有了更多信心。

图片

△ Tim Gowers博客的相关研究内容

Gilmer的思路是找反例

根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。

既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。

现在,我们用信息论视角看这一猜想:

正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。

然而如果基于“没有一个元素出现在超过1%集合”这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。

这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。

但这也就意味着在“并封闭”集族中,至少存在一个元素,会出现在超过1%的集合中。

2022年11月16日,Gilmer将这一思路写成论文,发表在了arXiv上。

图片

当然,他这篇论文还不是“完全体”,也就是说并没有完全证明并封闭集合猜想——

毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。

但这个新思路已经足够让学界震动。

普林斯顿大学数学家Ryan Alweiss评价“引入信息量”这一操作:非常聪明。

仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。

在后续研究中,对“并封闭集合猜想”的概率值证明,被推进到了38%。

图片

令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。

对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。

不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。

深度学习界的万引大佬

虽说此前在数学界没什么名头,Justin Gilmer也并非等闲之辈。

他任职于谷歌大脑团队,Google Scholar上引用破万,主要研究方向为深度学习、组合型、随机图论。

从其研究成果看,Justin Gilmer主攻图神经网络,高引论文涉及:消息传递神经网络(MPNN)、关系归纳偏差与图神经网络、显著图等领域。

图片

上述研究中,最高引用数为4789,标题为:Neural Message Passing for Quantum Chemistry。

该文定义了一种图上监督学习框架,消息传递神经网络(MPNN),并将其应用于分子特性预测上。

以量子化学为例,该框架根据原子性质(对应节点特征)和分子结构(对应边特征)预测了13种物理化学性质。

这一成果在领域内影响深远,腾讯AI Lab的云深智药平台,其框架之一也基于MPNN改进发展而来。

图片

另值得一提的是,Justin Gilmer还到过中国北京,2007年夏天他在微软亚研短暂呆过3个月。

根据其领英账号,Gilmer当时在一个4人团队,参与构建SVM分类器,用于识别句子中人名、地名、机构名等各命名实体之间的关系。

责任编辑:张燕妮 来源: 量子位
相关推荐

2023-01-04 13:01:55

AI数学

2022-06-15 18:57:43

人工智能

2021-12-02 15:57:46

AI 数据人工智能

2010-04-14 13:38:36

Linux桌面

2014-07-09 09:32:39

2022-02-28 11:10:05

AI机器学习模型

2021-05-10 07:30:33

Google技术谷歌

2020-12-23 17:50:46

AI语言模型AI伦理

2020-08-11 07:45:38

软件测试

2020-08-10 09:14:50

软件测试工具技术

2021-11-16 09:36:11

苹果 英特尔芯片

2020-03-26 15:00:52

计算机互联网 技术

2020-12-07 14:21:56

AI 谷歌人工智能

2018-08-17 10:07:58

保险业

2012-08-30 09:47:22

编程自学编程程序员

2019-07-29 07:41:56

程序员技能开发者

2018-08-09 23:54:38

2022-02-07 15:05:07

模型AI训练

2020-01-13 09:28:23

程序员技能开发者

2021-08-09 10:24:21

技术分类数学
点赞
收藏

51CTO技术栈公众号