人类偏好优化算法哪家强?跟着高手一文学懂DPO、IPO和KTO

人工智能 新闻
尽管收集人类对模型生成内容的相对质量的标签,并通过强化学习从人类反馈(RLHF)来微调无监督大语言模型,使其符合这些偏好的方法极大地推动了对话式人工智能的发展。

本文是 hugging face 上的一篇博客,针对时下常见的三种人类偏好优化算法进行了性能比较。作者进行了大量的实验,旨在通过不同的模型和不同的超参数,对无需强化学习(或偏好调整)就能调整语言模型的三种可行方法进行评估。这三种优化方法是:

  • 直接偏好优化 (Direct Preference Optimization, DPO)(https://huggingface.co/papers/2305.18290)
  • 身份偏好优化 (Identity Preference Optimisation, IPO)(https://huggingface.co/papers/2310.12036)
  • Kahneman-Taversky 优化(KTO)(https://github.com/ContextualAI/HALOs)

图片

本文五位作者

太长不看版

在这篇博客中,作者对三种优秀的 LLM 对齐算法进行了评估,分别是:直接偏好优化(DPO)、身份偏好优化(IPO)和 Taversky Optimisation 优化(KTO),并且在两个高质量的 7b 参数 大小的 LLM 上进行了实验。这些 LLM 经过了有监督微调,但没有进行人类偏好调整。作者发现,虽然确实能找到效果最好的算法,但要获得最佳结果,必须对一些关键超参数进行调整。

无强化学习的对齐

图片

DPO 的原理示意图 (https://arxiv.org/abs/2305.18290)


直接偏好优化(DPO)已成为将大型语言模型(LLM)与人类或人工智能偏好相结合的一种很有前景的方案。与基于强化学习的传统对齐方法不同,DPO 将对齐公式重新定义为一个简单的损失函数,该函数可以直接在偏好数据集{(x,y_w,y_l)}上进行优化,其中 x 是 prompt,y_w,y_l 分别是偏好的和非偏好的响应。


图片

人类偏好调整数据集的示例

DPO 简单易用的特性使得它广受欢迎,并已成功应用于 Zephyr 模型和 Intel 提出的 NeuralChat 等模型的训练当中。

DPO 的成功激发了研究人员对新的损失函数进行研究,这些研究可以归纳为以下两个主要方向:

  • 稳健性:DPO 的一个缺点是它在人类偏好数据集上很快就会过拟合。为了避免这种情况,谷歌 DeepMind 的研究人员引入了身份偏好优化(IPO),这种方法为 DPO 损失添加了一个正则,能够在不使用「提前停止」等技巧的情况下让模型收敛。
  • 对成对偏好数据进行分配:与大多数比对方法一样,DPO 需要一个成对偏好数据集图片,能够根据一组标准(如有益性或有害性),来标记哪种模型响应更好。在实践过程中,创建这些数据是一项耗时且成本高昂的工作。ContextualAI 最近提出了一种有趣的替代方案,称为 Kahneman-Taversky 优化(KTO),它完全根据被标记为「好」或「坏」的样本(例如在聊天 UI 中看到的图标👍或👎)来定义损失函数。这些标签更容易获得,可以说 KTO 是一种很有前景的方法,可以不断更新在生产环境中运行的聊天模型。

与此同时,需要注意这些方法都有相应的超参数,其中最重要的是 β ,这是一个控制对使用模型的偏好程度的权重。随着这些方法已经可以通过第三方库(如 huggingface TRL)来使用,接下来自然而然的问题是「在这些方法和超参数中,哪个组合能产生最好的聊天模型?」

本文旨在通过对这三种方法进行实验分析来回答这个问题,并且还要对关键超参数逐个分析,例如 β 和训练步数,最后通过 MT-Bench 评估所得模型的性能。MT-Bench 是衡量聊天模型功能的常见基准。

源代码地址:https://github.com/huggingface/alignment-handbook

使用链接

以下是相关资料的获取地址:

  • 执行超参数扫描的代码和配置文件:https://github.com/huggingface/alignment-handbook/tree/main/recipes/pref_align_scan
  • 本文使用的数据集和模型的集合:https://huggingface.co/collections/alignment-handbook/dpo-vs-kto-vs-ipo-65a69c5f03548d61dbe29ef8

实验设置

在进行对齐实验时,需要考虑两个主要因素:需要优化的模型和数据集。为了获得更多数据,作者考虑了两个模型,OpenHermes-2.5-Mistral-7B 和 Zephyr-7B-β-sft,以及两个对齐数据集:Intel 的 orca_dpo_paries 数据集和 ultrafeedback-binarized(https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)数据集。

  • orca_dpo_paries 数据集地址:https://huggingface.co/datasets/Intel/orca_dpo_pairs
  • ultrafeedback-binarized 数据集地址:https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

在第一个实验中,作者使用了 OpenHermes-2.5-Mistral-7B,因为它是不使用任何对齐方法的条件下,最好的 7B 级聊天模型之一。然后,本文使用了 Intel 的 orca_dpo_paries 数据集,该数据集包含 13k 个 prompt,其中被选择的响应结果由 GPT-4 生成,不需要的响应由 Llama Chat 13b 生成。这也是 NeuralChat 和 NeuralHermes-2.5-Mistral-7B 使用的数据集。

由于 KTO 本身不需要成对的偏好数据,作者直接将 GPT-4 生成的响应归类为「好」标签,将 Llama Chat 13b 的响应视为「坏」标签。虽然 GPT-4 的响应可能比 Llama Chat 13b 普遍更受欢迎,但在某些情况下,Llama-Chat-13b 可能会产生更好的响应,但作者认为这只是小概率事件,可以忽略不计。

第二个实验基于 ultrafeedback-binarized 数据集,在 Zephyr-7b-β-sft 模型上进行了偏好比对。ultrafeedback-binarized 数据集包含 66k 个 prompt 以及成对的偏好与拒绝的响应。该数据集之前被用于训练原始 Zephyr 模型,该模型当时在许多自动化基准测试和人工评估方面是 7B 类模型中最好的。

实验配置

对齐手册提供了一种配置单个实验的简单方法,这些参数可以在 run_dpo.py 中配置。

图片

作者在 Zephyr 上的实验配置也基本类似。

聊天模板由基本聊天模型中自动推断,OpenHermes-2.5 使用 ChatML,Zephyr 使用 H4。如果用户想使用自己的聊天格式,分词库现在已经启用了使用 jinja 格式字符串的用户定义聊天模板:

# Example of the Zephyr chat template
"{% for message in messages %}\n {% if message ['role'] == 'user' %}\n {{ '<|user|>\n' + message ['content'] + eos_token }}\n {% elif message ['role'] == 'system' %}\n {{ '<|system|>\n' + message ['content'] + eos_token }}\n {% elif message ['role'] == 'assistant' %}\n {{ '<|assistant|>\n'  + message ['content'] + eos_token }}\n {% endif %}\n {% if loop.last and add_generation_prompt %}\n {{ '<|assistant|>' }}\n {% endif %}\n {% endfor %}"

如下可以将对话格式化:

# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!

遍历超参数

实验中,作者逐次调整 β 值,分别在 0.01、0.1、0.2、…、0.9 时,对 DPO、IPO 和 KTO 三种方法进行实验。之所以包括 0.01,是因为作者观察到一些对齐算法对这个参数特别敏感。所有实验都只训练了一个 epoch。期间其他超参数保持不变,包括随机种子。

然后,作者使用上面定义的基本配置在 hugging face 的模型上逐个进行实验。

# Define an array containing the base configs we wish to fine tune
cnotallow=("zephyr" "openhermes")
# Define an array of loss types
loss_types=("sigmoid" "kto_pair" "ipo")
# Define an array of beta values
betas=("0.01" "0.1" "0.2" "0.3" "0.4" "0.5" "0.6" "0.7" "0.8" "0.9")

# Outer loop for loss types
for config in "${configs [@]}"; do
    for loss_type in "${loss_types [@]}"; do
        # Inner loop for beta values
        for beta in "${betas [@]}"; do
            # Determine the job name and model revision based on loss type
            job_name="$config_${loss_type}_beta_${beta}"
            model_revisinotallow="${loss_type}-${beta}"
            # Submit the job
            sbatch --job-name=${job_name} recipes/launch.slurm dpo pref_align_scan config_$config deepspeed_zero3 \\
            "--beta=${beta} --loss_type=${loss_type} --output_dir=data/$config-7b-align-scan-${loss_type}-beta-${beta} --hub_model_revisinotallow=${model_revision}"
        done
    done
done

实验结果

作者使用 MT Bench 评估了所有模型,这是一个多轮对话的基准。该基准使用 GPT-4 来判断模型在八个不同类别中的表现,分别是写作、角色扮演、推理、数学、编码、提取、STEM 和人文学科。虽然存在一些不完美的地方,但 MT Bench 仍然是评估会话 LLM 的好方法。

Zephyr-7b-β-SFT

图片

不同 β 取值情况下,Zephyr 模型的在 MT Bench 上的评分。

对于 Zephyr 模型,作者观察到 β 值取 0.01 时,模型性能最佳。这个结论在测试的所有三种算法中都是一致的,一个有趣的后续实验是在 0.0-0.2 范围内进行更细粒度的扫描。虽然 DPO 可以获得最高的 MT Bench 分数,但我们发现 KTO(成对)在除一种超参数情况外的所有设置中都能获得更好的结果。IPO 虽然有更强的理论保证,但在除一种情况外的所有情况下似乎都比基础模式更糟糕。

图片

MT Bench 各类别中,每种算法在 Zephyr 模型上的最佳结果。

通过分解 MT bench 评估的各个类别中每个算法的最佳结果,可以确定这些模型的优缺点。可以看到,在推理、编码和数学问题上仍有很大的改进空间。

OpenHermes-7b-2.5

虽然在这个模型上对各算法的观察结果与 OpenHermes 保持一致,即 DPO>KTO>IPO,但 β 的最佳取值点不尽相同。DPO、KTO 和 IPO 的最佳 β 选择分别为 0.6、0.3 和 0.01。

图片

OpenHermes 模型上,不同 β 的 MT Bench 得分。

OpenHermes-7b-2.5 显然是一个更强的基础模型,在人类偏好调整后,MT Bench 得分仅提高了 0.3。

图片

MT Bench 各类别中,三种算法在 OpenHermes 模型上的最佳结果。

总结

在这篇博客中,作者强调了在执行偏好对齐时选择正确的超参数的重要性。通过实验证明了 DPO 在成对偏好设置中优于 KTO,尽管有更强的理论保证,但 IPO 的性能似乎很差。 

这些实验结果都是可复现的,代码和配置文件现在都可以在对齐手册中找到。同时还可以看到性能最好的模型及数据集。

未来展望

作者将继续探索新的人类偏好对齐算法,并评估它们的性能。至少从目前看来,DPO 是最稳健和性能最好的大语言模型对齐算法。KTO 也同样具有发展前景,因为 DPO 和 IPO 都需要成对偏好数据,而 KTO 可以应用于任何含有正负面标签的数据集。

原文链接:https://huggingface.co/blog/pref-tuning?cnotallow=480af4490eaf8a2f4544fe3658589730

责任编辑:张燕妮 来源: 机器之心
相关推荐

2019-03-21 09:45:11

TypeScript编程语言Javascript

2020-08-03 08:01:50

爬虫技巧

2024-04-16 14:01:40

大型语言模型ORPO

2020-04-20 10:47:57

Redis数据开发

2021-06-28 14:13:34

OOM内存事故

2020-08-31 06:54:37

注解脱敏ELK

2021-06-26 09:26:01

Jupyter主题目录

2021-04-30 07:33:35

效率提升技巧

2021-04-28 07:22:13

HiveJson数组

2023-09-26 12:22:37

队列Python

2019-07-26 06:29:22

MySQL数据库SQL

2021-03-29 08:24:18

KubeadmKubernetes1运维

2022-08-01 14:59:57

Web前端后端

2021-03-12 08:39:25

FlinkSpark批处理

2021-08-04 07:47:18

IDEJTAGSWD

2017-05-15 11:10:10

大数据聚类算法

2023-11-28 09:31:55

MySQL算法

2020-12-02 09:36:20

算法分支思想

2023-11-01 10:49:50

Python面向对象

2020-12-10 16:49:43

HooksReact架构
点赞
收藏

51CTO技术栈公众号