测试一下,读懂数据的能力,你有吗?

大数据 数据分析
因为这就是孤零零一个数字,啥含义都没有。想读懂数据,至少它得是一个明确的数据指标。包含了指标名称,使用场景,计算口径。同样是180,我们换成:成年女性,身高180cm。是不是一下清晰很多了。

​很多新人读不懂数据含义。对着报表,只会和复读机一样叨叨:“昨天销量100,今天销量120,增加20……”讲这些只要不是瞎子都能看得到的东西。也因此经常被笑话。咋办?!

读懂第一阶段:明指标

给一个数字:180,能看出含义不?

不能!

因为这就是孤零零一个数字,啥含义都没有。想读懂数据,至少它得是一个明确的数据指标。包含了指标名称,使用场景,计算口径。同样是180,我们换成:成年女性,身高180cm。是不是一下清晰很多了。

读懂第二阶段:立标准

而且很多人可能已经有了本能的判断:这个女生个子很高。这么判断,可能基于数据统计。根据2015年《中国居民营养与慢性病状况报告》,报告显示,成年男性平均身高167.1cm,女性155.8cm,也就意味着180cm已经超过大量男性身高了。可以定义为高。这么判断,也可能基于约定俗成的习惯。比如习惯来说,女生超过170已经算高个了,180更是超大个。肯定算是高了。

两种判断都没有错,其实都是进一步读懂数据的方法:统计法和习惯法。统计法基于数据统计上的差异进行高中低划分。习惯法则是把人们约定俗成的习惯量化。

从“成年女性,身高180cm”到“成年女性,个子非常高”是读懂数据的一个重要转折。因为180cm是一个客观数值,不能直接影响我们决策。但是“高”是一个判断结果,这个判断是会影响我们决策的。不信继续往下看。

读懂第三阶段:合场景

场景1:小明身高175,二姨很热情的介绍了一个180的女生来给他相亲。

场景2:小明在组织一次展会活动,需要5名模特,HR linda介绍了1个180女生给他。

问两种场景下小明的心情如何?

有些女生会嫌弃比自己矮的男生,很不幸,小明就是被深深嫌弃过的一名靓仔。所以小明遇到场景1估计就直接骂娘了:“早就说了不要找比我高的,你丫是诚心给我难堪吗!”——这就是无视别人要求的结果。

场景2估计小明会很开心。展会的模特嘛,就是要人高马大模样俏,这样才够排面。当然肯定出场费贵很多。这时候要是图便宜,随便找几个矮个子妹子,估计领导看到身高就要开骂了——给你们费用,不拿来贴门面,拿来擦屁股吗!

所以想再深度读懂数据,一定要结合具体场景。这里有两种做法:

1、基于业务逻辑推演

2、基于过往经验总结

两种方法,都需要对业务场景的深入了解(如下图):

图片

读懂第四阶段:观态势

经过前三阶段,我们已知的信息是:

1、成年女性180cm属于:高

2、找模特需要个子:高

3、个子高+模样俏=价格贵

在这些基础上,再看数据,又会有新的解读。

比如你负责筹划展会,你下边的广告公司推荐的现场模特身高如下:

图片

看完以后,你可能马上读出:这帮孙子又想黑我的费用!偷偷摸摸给我换了一批便宜的模特!是滴,这个解读就又比“诶呀,身高缩水这么多”更进一步,这就是第四阶段的解读。

同样的数据,如果你没有读出这个,直接发给了领导,领导看完可能立马解读出:这个新来的小伙子不懂业务呀,哪有排面活做得这么寒碜的。

同样的数据,如果领导没有处理,真的找了一批随便什么人去展会。你的经销商们看了以后,立马能解读出来:诶呀,今年这品牌实力是不是有问题呀,你看展台面积也缩水了,新品发布会也不热烈,模特都是凑数的,不行不行。

所有这些都是基于一个身高数据,所谓见微知著,其实背后都是有逻辑的推理(如下图):

图片

读懂与瞎胡乱读的区别

当然,解读数据也是有限度的,过分解读,或者随便乱猜,都会导致错误理解。比如:

随便乱猜:你看模特都是美女,所以他们的老总肯定好色。

过度解读:你看这次请了九个美女模特,肯定有九款产品发布。

读懂与随便乱猜的最大区别,就是证据数量。比如上边经销商质疑品牌商实力,并不只是孤零零地看模特身高变化,也看了展台、看了新品发布会,有多个证据支持,解读自然接近真实。随便乱猜常常是毫无依据(好色的证据呢?)过度解读,常常是孤证不立(除了九个模特,还有其他证据吗?)。

当然并不排除我们获得了更多证据以后,有个新的解读。逻辑性+证据数量,是判断数据解读的唯一标准。只要有充足的证据+合理的逻辑,我们就有理由接受结论。

为啥企业里解读数据很难

为啥例子里解读数据很容易,可实际工作中很难呢?答:因为身高、相亲、展会模特这些例子,本身业务含义非常简单清晰,容易懂。可实际工作里,数据分析师常常脱离业务,对具体销售、运营、产品、售后等等情况一无所知,只能通过:销售额,毛利、活跃率、转化率等几个数字做简单猜测。

常见的问题,比如:

不懂业务含义:为啥相亲要关注身高?不是看有没有感觉吗?

不懂业务情况:为啥小明不喜欢高个子女生?高个子才是靓女啊!

不懂业务逻辑:为啥展会一定要找高个子模特?随便去几个人不行吗?

这样导致的结果,是无从对数据下判断。于是只能流于“昨天销量120,今天140,增长20,增长了16.7%”这种毫无意义的流水账。关键是,这些判断很有可能在业务看来是常识,所以在沟通中出现了“业务懒得说,数据不知道问”的尴尬场面。最后怪罪到数据分析师头上的时候,他还可怜巴巴地:我又没相过亲,我又没做过展会,呜呜呜……

所以想解读得深入、具体,就得贴近业务,学会从具体操作中抽象出数据含义,将业务方的判断量化。​

责任编辑:武晓燕 来源: 接地气的陈老师
相关推荐

2022-06-29 10:04:01

PiniaVuex

2009-06-15 11:22:06

2022-08-08 10:09:08

Vitest单元测试

2010-12-06 09:10:02

LightSwitch

2021-06-07 18:45:06

5GVR

2020-10-15 11:18:13

Linux内核虚拟机

2022-03-02 10:53:22

Postman工具开发

2020-07-02 09:46:05

AI

2018-06-05 14:02:05

OpenStack虚拟机网络

2013-09-13 09:31:09

MongoDBZardosht KaTokutek

2013-11-20 13:41:32

IE微软解决方法

2019-04-15 10:45:13

pingICMP协议

2018-02-08 10:52:13

Kotlin语言代码

2022-07-20 07:29:55

TCPIP协议

2021-01-21 07:31:11

Filter框架权限

2021-04-13 07:29:13

Swagger3接口Postman

2021-03-14 15:05:22

大数据程序员游戏

2021-12-27 18:00:30

对象数组Java

2021-06-24 07:54:20

vite 静态处理public

2018-08-23 09:12:21

点赞
收藏

51CTO技术栈公众号