三次握手,四次挥手,原来TCP这么有礼貌!

网络 通信技术
TCP是面向连接的协议,正如打电话时需要提前拨通电话,结束通话后需要挂断电话,那么TCP是如何建立连接与断开连接的呢?

我们在和他人谈话时,需要遵循一定的规则,比如确保对方能听懂我的语言。如果跟一个不懂中文的外国人说中文,是不可能很好地进行交流的。

计算机之间的通信也是如此,必须遵循一定的规则才能顺利“交流”。

图片

TCP与UDP是什么

在TCP/IP协议栈(互联网协议系列)中,TCP(Transmission Control Protocol ,传输控制协议)与UDP(User Datagram Protocol ,用户数据报协议)是传输层中的两种协议,我们平时刷视频、打游戏、看新闻等都要通过这两种协议进行数据传输。

那么这两种协议有什么区别呢?

看完上面的表格,是不是还是有点懵,下面小编用一个比喻来告诉你二者究竟有什么不同。

我们把两个应用之间的通信当作是两个人在通信,在不考虑时间因素的前提下,我们把TCP看成是打电话,把UDP看成是写信。

两个人打电话时,需要提前拨通对方的电话,这就是需要建立连接;通话过程中,双方能及时确认消息,如果听不清楚可以要求对方重新说一次,这就是安全可靠。

写信只需要根据地址把信发出去,这就是不需要建立连接;发出去的信也不知道对方能否收到,这就是不可靠。

TCP为了保证传输文件的完整性,会根据接收方的接收速率控制发送方的发送速率,即实行流量控制,所以TCP的传输速度低于UDP。

这两种协议不存在哪个好哪个差,都有着各自适合的应用场景。

比如传输文件时对速度没有要求,但是必须保证文件完整送达,没有数据丢失,这时就应该采用TCP协议,而我们在视频聊天时,时效性要求高而准确性要求略低,这时就采用UDP协议。

图片

TCP是面向连接的协议,正如打电话时需要提前拨通电话,结束通话后需要挂断电话,那么TCP是如何建立连接与断开连接的呢?

计算机之间的通信也是如此,必须遵循一定的规则才能顺利“交流”。

TCP的三次握手

在传输数据前,两台主机需要通过三次会话建立连接,这个过程我们称为三次握手。

第一次握手:客户端向服务端请求建立连接,

  • SYN=1(建立连接),
  • seq=x(序列号),

客户端进入SYN_SENT状态。

第二次握手:服务端向客户端返回确认并请求建立连接,

  • SYN=1(建立连接),
  • ACK=1 (已收到),
  • ack=x+1(确认号为收到的序列号加一),
  • seq=y(序列号),

服务端进入SYN_RCVD状态。

第三次握手:客户端向服务端发送确认报文,

  • ACK=1 (已收到),
  • ack=y+1(确认号为收到的序列号加一),
  • seq=x+1(序列号),

三次握手完成以后,2个主机之间,就可以传输数据啦~

图片

TCP的四次挥手

当数据传输完成后,两台主机需要通过四次会话断开连接,这个过程我们称为四次挥手。

  • 第一次挥手:客户端向服务端请求断开连接,FIN=1(断开连接),seq=u(序列号),客户端进入FIN_WAIT_1状态。
  • 第二次挥手:服务端向客户端返回确认报文,ACK=1 (已收到),ack=u+1(确认号为收到的序列号加一),seq=v(序列号),服务端进入CLOSE_WAIT状态,客户端进入FIN_WAIT_2状态。
  • 第三次挥手:服务端完成数据传输后,向客户端发送断开连接请求,FIN=1(断开连接),ACK=1 (已收到),ack=u+1(确认号为收到的序列号加一),seq=w(序列号),服务端进入LAST_ACK状态。
  • 第四次挥手:客户端向服务端返回确认报文,ACK=1 (已收到),ack=w+1(确认号为收到的序列号加一),seq=u+1(序列号),客户端进入TIME_WAIT状态,服务端进入CLOSED状态。客户端处于TIME_WAIT状态时,TCP连接还未释放掉,等待2个MSL(Maximum Segment Lifetime,最大段生命周期)的时长后,客户端进入CLOSE状态。

图片

看到这里,相信大家还有些疑问,下面就由小编来一一解答。

为什么是三次握手,两次握手或者四次握手不可以吗?

如果是两次握手,就可能出现下面这种情况。

客户端发送建立连接请求,由于网络拥塞,迟迟没有得到回应。客户端再次发送连接请求,服务端回应,连接建立。

一段时间后,客户端第一次发送的连接请求到达服务端,服务端以为客户端重新请求建立连接(其实并没有),此时服务端会返回响应报文并一直处于待连接状态,这就造成了资源浪费,如下图所示。

那为什么不是四次握手呢?

四次握手也能达到三次握手的效果,也就是将原本的第二次握手拆分成两次,一次发送确认报文,一次分开发送请求建立连接报文,但这同样造成了资源浪费,如下图所示。所以最终确定通过三次握手建立连接。

图片

为什么是四次挥手,三次挥手不可以吗?

不可以。当客户端发送断开连接请求后停止发送数据(客户端还能接收数据),有可能此时服务端还有数据需要发给客户端,所以它先回一个确认报文,等发送完所有数据,再发送断开连接的报文,通知客户端可以断开连接了。

四次挥手结束后,为什么客户端没有立刻关闭呢?

客户端没有立刻关闭,而是进入TIME_WAIT状态,等待2个MSL的时长后,客户端才进入CLOSE状态,这是为了确保第四次挥手的确认消息到达服务端。

如果服务端在规定时间内未收到最后的确认消息,会重新进行第三次挥手请求断开连接,客户端重新发送确认消息,如下图所示。

图片

MSL是报文的最长生存时间,2个MSL是在网络中来回两个报文所需要的最长时间,如果超过这个时间,客户端没有重新收到断开连接的请求,说明四次挥手顺利完成,可以断开连接了。

总结

今天的内容就到这里了,和小编一起复习一下今天的内容吧:

  • TCP和UDP是传输层中的两种协议,TCP安全可靠但传输速度慢,UDP传速度快但可能丢失数据,这两种协议各有优势,适合不同的应用场景。
  • 两台主机建立连接和断开连接的过程被称为“三次握手”和“四次挥手”。
  • 了解了为什么一定是三次握手和四次挥手。​
责任编辑:赵宁宁 来源: 中兴文档
相关推荐

2015-10-13 09:42:52

TCP网络协议

2019-06-12 11:26:37

TCP三次握手四次挥手

2021-01-29 06:11:08

TCP通信三次握手

2021-05-18 12:27:40

TCP控制协议

2021-07-03 17:47:25

TCP控制协议

2017-09-25 21:27:07

TCP协议数据链

2020-02-17 10:10:43

TCP三次握手四次挥手

2020-06-29 14:50:47

TCP状态ACK

2021-05-28 09:08:20

TCP连接序列号

2014-09-19 09:46:46

TCPIP

2022-08-28 20:35:52

三次握手四次挥手TCP

2021-08-04 08:01:28

Linux 三次握手Linux 系统

2020-01-09 09:31:05

三次握手四次挥手 TCP

2018-08-10 09:23:19

TCP考点数据

2020-03-02 14:41:04

运维架构技术

2021-04-30 13:32:17

TCP三次握手网络协议

2019-12-13 07:31:04

TCP三次握手四次挥手

2020-02-13 21:30:23

TCP三次握手四次挥手

2021-08-26 05:04:38

TCP网络HTTP

2022-08-27 13:50:44

TCP服务端函数
点赞
收藏

51CTO技术栈公众号