社区编辑申请
注册/登录
光速图像识别了解一下:低于1纳秒的那种
人工智能 新闻
宾夕法尼亚大学的工程师们研发的PDNN,能够直接分析图像,不需要时钟、传感器或大型存储模块,以有效降低耗能。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

比深度神经网络速度还快的是什么?

或许光子DNN可以回答这个问题。

光速图像识别了解一下:低于1纳秒的那种 | Nature

现在,美国研究者开发的一个光子神经网络 (photonic deep neural network,PDNN),让图像识别仅需1纳秒

1纳秒是什么概念?它等于10-9秒,这与最先进的微芯片单时钟周期(最小的时间单位)相当。

此外,研究者测试发现,PDNN对图像进行2分类和4分类的准确率分别高达93.8%和89.8%。

诚然,如今的大型多层神经网络高效且运算能力很强,但其也受到硬件的限制,往往需要消耗大量的电力资源等。

而宾夕法尼亚大学的工程师们研发的PDNN,能够直接分析图像,不需要时钟、传感器或大型存储模块,以有效降低耗能。

这项研究成果的相关论文在6月1日登上了Nature杂志。

光子DNN比传统DNN更快

和传统DNN相比,光子DNN的原理和性能有何不同?

先来看看传统DNN

图a是传统DNN的结构示意图,包括一个数据排列单元,然后是输入层、几个隐藏层,和一个提供分类输出的输出层。

图b展示了传统N输入神经元的结构:输入的线性加权和,通过一个非线性激活函数,产生神经元的输出。

光速图像识别了解一下:低于1纳秒的那种 | Nature

图c和图d分别是一个PDNN芯片的神经网络示意图和N输入神经元结构。

首先在一个5×6光栅耦合器上形成输入图像,然后将其排列成4个重叠的子图像,子图像的像素被传送到第一层神经元,形成一个卷积层。

后面的神经元与它们的前一层完全连接,该网络产生2个输出,可最多为4种图像信息分类。

对于这些神经元,其输入的都是光学信号。

光速图像识别了解一下:低于1纳秒的那种 | Nature

在每个神经元中,线性计算是通过光学方式进行的,而非线性激活函数是通过光电子方式实现的,从而可使分类时间低于570ps(=0.57ns)

论文的通讯作者,电气工程师Firooz Aflatouni对这个PDNN的性能补充描述道:它每秒可以对近18亿张图像进行分类,而传统的视频帧率是每秒24至120帧。

这里的PDNN芯片电路被集成在仅9.3 mm2 的面积内,不需要时钟、传感器以及大型存储模块。

一个激光器被耦合到芯片内,为各个神经元提供光源;该芯片包含两个5×6的光栅耦合器,分别作为输入像素阵列和校准阵列。

光速图像识别了解一下:低于1纳秒的那种 | Nature

不过,均匀分布的供给光每个神经元光提供了相同的输出范围,显然这将允许将其扩展到更大规模的PDNN。

光子DNN芯片的图像分类测试

研究者们让这个PDNN微芯片识别手写字母。

一组实验测试了PDNN芯片的二分类性能:需要对共计216个“p”和“d”字母组成的数据集进行分类。

该芯片准确率高于93.8%。((92.8%+94.9%)/2)

光速图像识别了解一下:低于1纳秒的那种 | Nature

另一组实验测试了PDNN芯片的四分类性能:需对共计432个“p”、“d”、“a”、“t”字母组成的数据集进行分类。

该芯片分类准确率高于89.8%。

光速图像识别了解一下:低于1纳秒的那种 | Nature

这些结果表明,即使有更多的类(如分四类情况),且存在打印机引起的变化和噪声,PDNN芯片仍取得了较高的分类精度。

为了比较这个PDNN和传统DNN的图像分类准确性,研究者还测试了在Python中使用Keras库实现的190个神经元组成的DNN,结果显示:它在相同图像上的分类准确率为96%。

作者简介

光速图像识别了解一下:低于1纳秒的那种 | Nature

论文一作,Farshid Ashtiani现任美国宾夕法尼亚大学电气和系统工程系博士后研究员,主要研究方向是光子-电子联合/混合集成系统。

光速图像识别了解一下:低于1纳秒的那种 | Nature

论文的其他作者也都来自宾大的电气和系统工程系。

去年,就有一位日本NTT研究所的科学家表示,光子计算可以降低神经网络计算的能耗,拥有巨大潜力,很可能成为深度学习的未来重点发展对象。

该研究的宾大工程师们则表示,PDNN对光学数据的直接、无时钟处理消除了模拟-数字转换和对大型内存模块的要求,使下一代深度学习系统的神经网络更快、更节能。

对于光子深度神经网络的前景和应用,你怎么看?

论文地址:

https://www.nature.com/articles/s41586-022-04714-0#article-info

责任编辑:张燕妮 来源: 量子位

同话题下的热门内容

基于人工智能技术快速构建三维模型福佑卡车技术合伙人陈冠岭:自动驾驶在干线物流的应用基于TensorFlow和QuestDB的时间序列预测美国“断供EDA”,究竟怎么一回事?面向推荐的汽车知识图谱构建特斯拉全自动驾驶三次撞上儿童假人,撞后没停重新加速一行代码让英特尔显卡光追性能“改进100 倍”,网友们笑了2023 年值得关注的十大人工智能趋势

编辑推荐

转转公司架构算法部孙玄:AI下的微服务架构Facebook开源相似性搜索类库Faiss,超越已知最快算法8.5倍运维:对不起,这锅,我们不背快消品图像识别丨无人店背后的商品识别技术最全面的百度NLP自然语言处理技术解析
我收藏的内容
点赞
收藏

51CTO技术栈公众号