社区编辑申请
注册/登录
超优的纯文本模型?GPT-4蓄势待发
人工智能 新闻
GPT-4 不会成为最大的语言模型,Altman 曾说它不会比 GPT-3 大多少。

2020 年 5 月,在 GPT-2 发布一年后,GPT-3 正式发布,而 GPT-2 也是在原始 GPT 论文发表一年后发布的。按照这种趋势, GPT-4 早在一年前就该发布了,但至今尚未面世。

OpenAI 的首席执行官 Sam Altman 几个月前表示即将推出 GPT-4 ,预计将在 2022 年 7 月至 8 月发布。

GPT-3 的强大性能让人们对 GPT-4 的期望颇高。然而关于 GPT-4 的公开信息甚少,Altman 在去年的一次 Q&A 中就 OpenAI 对 GPT-4 的想法给出了一些提示。他明确表示,GPT-4 不会有 100T 参数。

正因为 GPT-4 的公开信息很少,人们对其做出诸多预测。近期,一位分析师 Alberto Romero 基于 OpenAI 和 Sam Altman 透露的信息,以及当前趋势和语言 AI 的最新技术,对 GPT-4 作出了一番新的预测,以下是他的预测原文。

模型大小:GPT-4 不会非常大

GPT-4 不会成为最大的语言模型,Altman 曾说它不会比 GPT-3 大多少。它的大小可能在 GPT-3 和 Gopher 之间 (175B -280B)。

这个推测有充分的理由。

NVIDIA 和微软去年联合创建的威震天 - 图灵 NLG( MT-NLG)号称是拥有 530B 参数的最大密集神经网络,参数量已经是 GPT-3 的 3 倍,而最近谷歌的 PaLM 已有 540B 参数。但值得注意的是,在 MT-NLG 之后出现的一些较小的模型反而达到了更高的性能水平。

这意味着:更大不一定更好。

业内很多公司已经意识到模型大小不是性能的决定因素,扩大模型也不是提升性能的最好方法。2020 年,OpenAI 的 Jared Kaplan 及其同事得出结论:当增加的计算预算主要分配到增加参数的数量上时,性能的提高是最显著的,并且遵循幂律关系。

然而,以超大规模的 MT-NLG 为例,它在性能方面并不是最好的。事实上,甚至在任何单一类别的基准测试中都不是最好的。较小的模型,如 Gopher (280B)或 Chinchilla (70B) 在一些任务上比 MT-NLG 好得多。

显然,模型大小并不是实现更好的语言理解性能的唯一因素。

业内多家公司开始放弃「越大越好」的教条。拥有更多参数也会带来一些副作用,例如计算成本过高、性能进入瓶颈期。当能够从较小的模型中获得相似或更好的结果时,这些公司就会在构建巨大模型之前三思而后行。

Altman 表示,他们不再专注于让模型变得更大,而是让更小的模型发挥最大的作用。OpenAI 是扩展假设(scaling hypothesis)的早期倡导者,但现在已经意识到其他未探索的路径也能改进模型。

因此,GPT-4 不会比 GPT-3 大很多。OpenAI 将把重点转移到其他方面,例如数据、算法、参数化和价值对齐(alignment)等,这可能会带来更显著的改进。关于 100T 参数模型的功能,我们只能等待了。

优化:GPT追求“最优”

语言模型在优化方面存在一个关键限制,即训练成本非常高。以至于研发团队不得不在准确性和成本之间进行权衡。这通常会导致模型明显欠优化。

GPT-3 只训练了一次,当在一些用例中出现错误时就要重新进行训练。OpenAI 决定,GPT-4 不会采取这种方式,因为成本太高,研究人员无法找到模型的最佳超参数集(例如学习率、批大小、序列长度等)。

高训练成本的另一个后果是,对模型行为的分析要受到限制。Kaplan 的团队得出模型大小是提高性能最相关的变量时,他们并没有考虑训练 token 的数量,这需要大量的计算资源。

不得不承认,一些大型公司依照 Kaplan 团队的结论,在扩大模型上「浪费」了数百万美元。现在,以 DeepMind 和 OpenAI 为首的公司正在探索其他方法。他们试图找到最优的模型,而不仅仅是更大的模型。

优化参数

上个月,微软和 OpenAI 证实用优化后的超参数进行训练,GPT-3 能够获得较大的改进。他们发现,6.7B 版本的 GPT-3 性能大幅提升,可与最初的 13B GPT-3 相媲美。超参数调优带来的性能提升,相当于参数量增加了一倍。

他们利用一种称为μP 的新型参数化方式,其中小模型的最佳超参数同样适用于同类型的大模型。因此,μP 能够以一小部分训练成本优化任意大小的模型,几乎毫无成本地将超参数迁移到更大的模型中。

优化计算模型

几周前,DeepMind 重新审视了 Kaplan 等人的发现,并意识到:与人们认为的相反,训练 token 的数量对性能的影响与模型大小的影响一样大。DeepMind 得出结论:计算预算应该平均分配给扩展参数和数据。他们用大型语言模型 4 倍的数据量(1.4T token)训练 Chinchilla(70B)证明了这个假设。

图源:DeepMind

结果很明确,Chinchilla 在许多语言基准测试中「显著」优于 Gopher、GPT-3、MT-NLG 等语言模型,这表明当前的大模型训练不足且规模过大。

考虑到 GPT-4 将比 GPT-3 略大,根据 DeepMind 的发现,它达到计算最优所需的训练 token 数量将约为 5 万亿,比当前数据集高出一个数量级。为了最小化训练损失,训练 GPT-4 所需的 FLOP 将是 GPT-3 的约 10-20 倍(参照 Gopher 的计算量)。

Altman 曾在 Q&A 中表示 GPT-4 的计算量将比 GPT-3 更大,他可能指的就是这一点。

可以肯定的是,OpenAI 将致力于优化模型大小以外的其他变量。找到最佳的超参数集以及最佳的计算模型大小和参数数量,这可能会让模型在所有基准测试中获得令人难以置信的提升。

多模态:GPT-4 将是纯文本模型

人类的大脑是多感官的,因为我们生活在一个多模态的世界中。一次只以一种模态感知世界,极大地限制了人工智能理解世界的能力。因此,人们认为深度学习的未来是多模态模型。

然而,良好的多模态模型比良好的纯语言或纯视觉模型更难构建。将视觉和文本信息组合成单一的表征是一项非常艰巨的任务。我们对大脑如何做到这一点的认知还非常有限,难以在神经网络中实现它。

大概也是出于此原因,Altman 在 Q&A 中也表示,GPT-4 不会是多模态的,而是纯文本模型。我猜测在转向下一代多模态 AI 之前,他们正试图通过调整模型和数据集大小等因素达到语言模型的极限。

稀疏性:GPT-4 将是一个密集模型

近来,稀疏模型利用条件计算,使用模型的不同部分来处理不同类型的输入,取得了巨大成功。这些模型可以轻松扩展到超过 1T 的参数 mark 上,而不会导致过高的计算成本,从而在模型大小和计算预算之间构建出正交关系。然而,这种 MoE 方法的优势在非常大的模型上会有所减弱。

鉴于 OpenAI 一直专注于密集语言模型,我们有理由预期 GPT-4 也将是一个密集模型。

不过,人类的大脑严重依赖于稀疏处理,稀疏性与多模态类似,很可能会主导未来几代神经网络。

GPT-4 将比 GPT-3 更加对齐

OpenAI 为解决 AI 价值观对齐(alignment)的问题付出了诸多努力:如何让语言模型遵循我们的意图并遵守我们的价值观。这不仅需要数学上让 AI 实现更准确的理解,而且需要在哲学方面考量不同人类群体之间的价值观。OpenAI 已尝试在 InstructGPT 上接受人工反馈训练以学会遵循指令。

InstructGPT 的主要突破在于,无论其在语言基准上的结果如何,它都被人类评估者一致认为是一比 GPT-3 更好的模型。这表明,使用基准测试作为评估 AI 能力的唯一指标是不合适的。人类如何看待模型同样重要,甚至更重要。

鉴于 Altman 和 OpenAI 对有益 AGI 的承诺,我相信GPT-4将实现并构建他们从InstructGPT中发现的成果。

他们将改进对齐模型的方式,因为 GPT-3 只采用了英文语料和注释。真正的对齐应该包含来自不同性别、种族、国籍、宗教等方面的信息特征。这是一个巨大的挑战,朝着这个目标迈进意义重大。

6 总结

综上,我关于 GPT-4 的预测大致包括以下几个方面:

模型大小:GPT-4 会比 GPT-3 大,但不会很大。模型大小不会是其显著特征;

优化:GPT-4 将使用比 GPT-3 更多的计算,它将在参数化(最优超参数)和扩展定律(训练 token 的数量与模型大小一样重要)方面做出新的改进;

多模态:GPT-4 将是纯文本模型,OpenAI 正试图将语言模型发挥到极致,然后再转变成像 DALL·E 这样的多模态模型;

稀疏性:GPT-4 遵循 GPT-2 和 GPT-3 的趋势,它将是一个密集模型,但稀疏性未来将占据主导地位;

对齐:GPT-4 将比 GPT-3 更符合人们的价值要求,它将应用从 InstructGPT 中学到的经验。

Alberto Romero 根据 Altman 和 OpenAI 给出的信息作出了有理有据的推测,期待这些预测在几个月后在即将面世的 GPT-4 中得到印证。​

责任编辑:张燕妮 来源: 机器之心
相关推荐

2022-06-05 21:09:47

Python办公自动化

2022-06-24 11:14:00

美团开源

2022-06-07 14:31:09

K8S网络模型容器网络

2022-06-24 10:52:47

人工智能作业帮T前线

2022-06-15 08:25:07

Python天气数据可视化分析

2022-06-30 11:03:27

DDoS攻击WAF

2022-06-25 21:22:30

编程Rust代码

2022-05-05 08:25:22

模型OpenAI代码

2022-06-06 14:29:20

图像模型任务

2022-06-21 09:26:21

Shell脚本JavaScript

2022-06-21 14:22:08

云计算混合云人工智能

2022-06-16 15:54:32

前端

2022-06-28 14:01:42

MITOpenAI预训练模型

2022-05-25 07:11:13

2022-06-15 16:16:21

分布式数据库鸿蒙

2022-06-27 15:25:08

架构模型治理

2022-06-22 08:02:11

2022-04-20 20:28:40

HDF 驱动框架鸿蒙操作系统

2022-06-15 18:57:43

人工智能

2022-06-17 10:24:57

IaC

同话题下的热门内容

新出生的机器狗,打滚1小时后自己掌握走路,吴恩达大弟子成果在我的世界中,B站UP主搭建世界首个纯红石神经网络,图灵奖得主Yann LeCun转赞从机器学习中受益最大的四个行业2022年Nature年度指数出炉,涨幅最快50机构,中国占31席!科技巨头几百亿研发AI被质疑吹嘘:曾击败人类的AI要被卖了芯片巨头正在偷偷研发这些新AI技术,不比拍照有意思人工智能在网络安全中的作用人工智能技术在语言学领域的应用

编辑推荐

转转公司架构算法部孙玄:AI下的微服务架构Facebook开源相似性搜索类库Faiss,超越已知最快算法8.5倍运维:对不起,这锅,我们不背快消品图像识别丨无人店背后的商品识别技术最全面的百度NLP自然语言处理技术解析
我收藏的内容
点赞
收藏

51CTO技术栈公众号