社区编辑申请
注册/登录
2022年值得关注的六大AI趋势 译文
人工智能
人工智能(AI)不是一项新技术,但随着企业和个人开始了解AI带来的前景,其影响力刚开始显现。AI将以前所未有的方式改变企业,为各行各业的企业家、业务负责人和员工创造新的机会。

AI正迅速进入到我们的日常生活,甚至不久后可能很难说出它与人类的界限。2022年的AI趋势有哪些?AI领域的最新进展对未来几年又意味着什么?

本文探讨几个AI趋势,并讨论这些技术对企业及数字化转型工作所带来的影响。

1.大型语言模型

语言模型是语言理解的“大脑”。这些AI模型依靠机器学习来确定短语、句子或段落之间有怎样的关系。它通过摄取大量文本并建立统计模型来学习和理解语言,统计模型可以理解短语、句子或段落彼此的关联性。

语言模型越来越大,同时在理解语言方面越来越完善。AI可以处理和生成更多类似人的交互,同时使用语义技术来提高结果的质量。

这些大型语言模型的另一个好处是,只需要几个训练例子就可以针对新问题对模型进行微调。以前,AI解决方案需要大量人工标记的数据,这类数据创建起来困难又费钱。借助更庞大的AI模型,我们现在只需一个或几个训练例子就可以获得相同或更好的结果。这将降低AI的成本,许多业务流程有望实现自动化。

2.自然语言处理

自然语言处理(NLP)是指“计算机能够理解文本或语音的含义”,已彻底改变了人类与机器交互的方式。这已广泛应用于Siri、Alexa和Cortana等AI助手中。这种技术可以理解人们所说的话,对这些信息采取适当的行动,并做出相应的反应。然而,NLP不仅仅能与用户进行清晰的交流,还有助于扩展业务运营规模。

3.生成式AI

生成式AI是AI的一个分支,专注于生成内容,比如撰写文本、生成图像、由文本生成图像以及制作音乐。据Gartner声称,生成式AI是2022年的战略性AI技术趋势。生成式AI有多种用途,包括用于艺术创作、为新闻媒体创作内容以及个人创造力或教育。

生成式语言模型是一种引人入胜的应用。它们便于生成听起来自然、语法正确,又适合特定主题或风格的文本。它们还可以生成更通用的智能、解决问题并适应不同的情况。

4.强化学习

这是机器学习的一个分支,数据科学家专注于制定决策和基于奖励的训练。强化学习的工作原理是,从环境中学习,并调整行为,以获得最大的奖励。这模仿我们人类的学习方式:我们并不总是得到积极的强化,经常犯错误,通过试错方法来实现目标。

强化学习现广泛用于机器人、游戏、数据科学和金融交易。由于我们可以期待代理做出复杂的决策,并保持长期目标,强化学习是AI界最令人兴奋的趋势之一。

5.多模型学习

多模型学习是机器学习的一个分支,系统可以从图像、文本、语音、声音和视频等感官输入中学习。比如说,多模型系统可以从图像和文本中学习,让它们更好地理解想法。同样,机器可以处理来自许多不同来源(比如语音和语言处理)的数据,以生成更准确的结果。

多模型学习之所以很重要,是由于它可以帮助机器学习更好地理解世界。通过使用多种形式的输入,它们可以全面了解对象和事件。这将帮助我们建立更好的AI模型,并取得更好的结果。

6.消除机器学习中的偏误

随着AI算法在企业界变得越来越普遍,它们受到更严格的审查。许多人担心这些系统会延续甚至加剧历史偏误问题,比如种族主义、性别歧视和偏执等。

企业和数据科学家必须在AI开发过程中消除偏误,以解决这类问题。公司可以通过核查输入并在可能的情况下调整输入来减少AI的偏误。比如说,如果一个系统拿人物照片来训练,但缺少老年女性的图像,那么提供老年女性的照片后,它可能难以识别出来。

结论

根据我的经验,许多技术领导者仍在试图了解AI的工作原理以及如何实际运用AI。要开始整合AI,对于您希望AI系统做什么有明确的目标很重要。了解您拥有的数据以及需要AI系统做什么至关重要。

要特别注意大型语言模型的发展动向,因为这些模型近年来取得了长足的进步,可能会彻底改变行业。理解和响应语言的能力是智能应用程序的关键组成部分,将开辟新的商机。

随着更多的企业和研究组织实施新的工具、方法和技术以推动创新,AI的采用会继续提高。AI系统已经被用于改进企业战略、客户服务、市场研究、广告营销、预测性维护、自动驾驶汽车、视频监控和医疗保健等方面。

它带来了新的可能性,比如这项技术能够理解任何数据,并使业务流程更高效。它同时面临新的挑战,比如消除机器学习中的偏误。这些趋势将以新的方式影响我们的日常生活和全球各地的企业。

原文标题:Six AI Trends To Watch In 2022,作者:Øyvind Forsbak

责任编辑:华轩 来源: 51CTO
相关推荐

2022-03-09 06:22:03

智能建筑物联网

2022-07-01 05:58:38

开源技术开源

2022-05-19 10:39:28

人工智能AI

2022-06-07 10:09:42

新技术人工智能5G

2022-07-04 23:16:21

开源技术容器

2022-07-15 16:25:24

制造业大数据工业物联网

2022-06-07 11:01:56

人工智能AI技术大会

2022-05-11 17:16:42

人工智能机器人

2022-02-10 10:53:08

2022-07-22 11:53:29

人工智能AI发展趋势

2022-07-01 11:04:00

2022-02-12 00:13:11

2022-05-09 10:46:06

数字化转型技术趋势

2022-08-10 09:56:36

人工智能AI

2022-01-07 09:41:44

2022-01-12 16:18:10

2022-07-21 14:09:11

人工智能医疗保健工具

2022-01-13 19:07:09

2022-06-28 08:47:27

2022-03-16 17:09:00

人工智能应用

同话题下的热门内容

如何创建一个无代码的自助客户聊天机器人基于人工智能技术快速构建三维模型中科院打脸谷歌:普通电脑追上量子优越性,几小时搞定原本要一万年的计算负责任的机器学习--“玻璃盒”方法AI到底是如何工作的?PathAI利用机器学习推动药物开发AI赋能视频直播,如何提升系统安全性?玩转文字、文采飞扬,你也可以是这样的昇腾AI程序员!

编辑推荐

转转公司架构算法部孙玄:AI下的微服务架构Facebook开源相似性搜索类库Faiss,超越已知最快算法8.5倍运维:对不起,这锅,我们不背快消品图像识别丨无人店背后的商品识别技术最全面的百度NLP自然语言处理技术解析
我收藏的内容
点赞
收藏

51CTO技术栈公众号