项目升级后如何兼容旧接口?试试适配器模式吧!

开发 项目管理
适配器模式是用来做适配,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。

前言

适配器模式的英文翻译是 Adapter Design Pattern。顾名思义,这个模式就是用来做适配的,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。

对于这个模式,有一个经常被拿来解释它的例子,就是USB转接头充当适配器,把两种不兼容的接口,通过转接变得可以一起工作。

适配器模式的原理与实现

原理很简单,我们再来看下它的代码实现。

适配器模式有两种实现方式:类适配器和对象适配器。其中,类适配器使用继承关系来实现,对象适配器使用组合关系来实现。

具体代码如下。其中,其中,ITarget 表示要转化成的接口定义。Adaptee 是一组不兼容 ITarget接口定义的接口,Adaptor 将 Adaptee 转化成一组符合 ITarget 接口定义的接口。

// 类适配器: 基于继承
public interface ITarget {
void f1();
void f2();
void fc();
}
public class Adaptee {
public void fa() { ... }
public void fb() { ... }
public void fc() { ... }
}
public class Adaptor extends Adaptee implements ITarget {
public void f1() {
super.fa();
}
public void f2() {
//...重新实现f2()...
}
// 这里fc()不需要实现,直接继承自Adaptee,这是跟对象适配器最大的不同点
}
// 对象适配器:基于组合
public interface ITarget {
void f1();
void f2();
void fc();
}
public class Adaptee {
public void fa() { ... }
public void fb() { ... }
public void fc() { ... }
}
public class Adaptor implements ITarget {
private Adaptee adaptee;
public Adaptor(Adaptee adaptee) {
this.adaptee = adaptee;
}
public void f1() {
adaptee.fa(); //委托给Adaptee
}
public void f2() {
//...重新实现f2()...
}
public void fc() {
adaptee.fc();
}
}

针对这两种实现方式,在实际开发中,到底该选择哪一种呢?判断的标准主要有两个,一个是Adaptee接口的个数,另一个是Adaptee和ITarget的契合程度:

  • 如果Adaptee接口并不多,那两种实现方式都可以。
  • 如果 Adaptee 接口很多,而且 Adaptee 和 ITarget 接口定义大部分都相同,那我们推荐使用类适配器,因为 Adaptor 复用父类 Adaptee 的接口,比起对象适配器的实现方式,Adaptor 的代码量要少一些。
  • 如果 Adaptee 接口很多,而且 Adaptee 和 ITarget 接口定义大部分都不相同,那我们推荐使用对象适配器,因为组合结构相对于继承更加灵活。

适配器模式应用场景总结

一般来说,适配器模式可以看作一种“补偿模式”,用来补救设计上的缺陷。应用这种模式算是“无奈之举”。如果在设计初期,我们就能协调规避接口不兼容的问题,那这种模式就没有应用的机会了。

适配器模式的应用场景是“接口不兼容”。那在实际的开发中,什么情况下才会出现接口不兼容呢?

封装有缺陷的接口设计

假设我们依赖的外部系统在接口设计上有缺陷(比如包含大量静态方法),引入之后会影响到我们自身代码的可测试性。为了隔离设计上的缺陷,我们希望对外部系统提供的接口进行二次封装,抽象出更好的接口设计,这个时候就可以使用适配器模式了。

举个例子:

public class CD { //这个类来自外部sdk,我们无权修改它的代码
//...
public static void staticFunction1() { //... }
public void uglyNamingFunction2() { //... }
public void tooManyParamsFunction3(int paramA, int paramB, ...) { //... }
public void lowPerformanceFunction4() { //... }
}
// 使用适配器模式进行重构
public class ITarget {
void function1();
void function2();
void fucntion3(ParamsWrapperDefinition paramsWrapper);
void function4();
//...
}
// 注意:适配器类的命名不一定非得末尾带Adaptor
public class CDAdaptor extends CD implements ITarget {
//...
public void function1() {
super.staticFunction1();
}
public void function2() {
super.uglyNamingFucntion2();
}
public void function3(ParamsWrapperDefinition paramsWrapper) {
super.tooManyParamsFunction3(paramsWrapper.getParamA(), ...);
}
public void function4() {
//...reimplement it...
}
}

统一多个类的接口设计

某个功能的实现依赖多个外部系统(或者说类)。通过适配器模式,将它们的接口适配为统一的接口定义,然后我们就可以使用多态的特性来复用代码逻辑。

举个例子:假设我们的系统要对用户输出的文本内容做敏感词过滤,为了提高过滤的召回率,我们引入了多个第三方敏感词过滤系统,依次对用户输入的内容进行过滤,过滤掉尽可能多的敏感词。但是,每个系统提供的过滤接口都是不同的,这就意味着我们没法复用一套逻辑来调用各个系统。

这个时候,我们可以用适配器模式,将所有系统的接口适配为统一的接口定义,这样我们可以复用调用敏感词过滤的代码:

public class ASensitiveWordsFilter { // A敏感词过滤系统提供的接口
//text是原始文本,函数输出用***替换敏感词之后的文本
public String filterSexyWords(String text) {
// ...
}
public String filterPoliticalWords(String text) {
// ...
}
}
public class BSensitiveWordsFilter { // B敏感词过滤系统提供的接口
public String filter(String text) {
//...
}
}
public class CSensitiveWordsFilter { // C敏感词过滤系统提供的接口
public String filter(String text, String mask) {
//...
}
}
// 未使用适配器模式之前的代码:代码的可测试性、扩展性不好
public class RiskManagement {
private ASensitiveWordsFilter aFilter = new ASensitiveWordsFilter();
private BSensitiveWordsFilter bFilter = new BSensitiveWordsFilter();
private CSensitiveWordsFilter cFilter = new CSensitiveWordsFilter();
public String filterSensitiveWords(String text) {
String maskedText = aFilter.filterSexyWords(text);
maskedText = aFilter.filterPoliticalWords(maskedText);
maskedText = bFilter.filter(maskedText);
maskedText = cFilter.filter(maskedText, "***");
return maskedText;
}
}
// 使用适配器模式进行改造
public interface ISensitiveWordsFilter { // 统一接口定义
String filter(String text);
}
public class ASensitiveWordsFilterAdaptor implements ISensitiveWordsFilter {
private ASensitiveWordsFilter aFilter;
public String filter(String text) {
String maskedText = aFilter.filterSexyWords(text);
maskedText = aFilter.filterPoliticalWords(maskedText);
return maskedText;
}
}
//...省略BSensitiveWordsFilterAdaptor、CSensitiveWordsFilterAdaptor...
// 扩展性更好,更加符合开闭原则,如果添加一个新的敏感词过滤系统,
// 这个类完全不需要改动;而且基于接口而非实现编程,代码的可测试性更好。
public class RiskManagement {
private List<ISensitiveWordsFilter> filters = new ArrayList<>();
public void addSensitiveWordsFilter(ISensitiveWordsFilter filter) {
filters.add(filter);
}
public String filterSensitiveWords(String text) {
String maskedText = text;
for (ISensitiveWordsFilter filter : filters) {
maskedText = filter.filter(maskedText);
}
return maskedText;
}
}

替换依赖的外部系统

当我们把项目中依赖的一个外部系统替换为另一个外部系统的时候,利用适配器模式,可以减少对代码的改动。如下:

// 外部系统A
public interface IA {
//...
void fa();
}
public class A implements IA {
//...
public void fa() { //... }
}
// 在我们的项目中,外部系统A的使用示例
public class Demo {
private IA a;

public Demo(IA a) {
this.a = a;
}
//...
}
Demo d = new Demo(new A());
// 将外部系统A替换成外部系统B
public class BAdaptor implemnts IA {
private B b;
public BAdaptor(B b) {
this.b= b;
}
public void fa() {
//...
b.fb();
}
}
// 借助BAdaptor,Demo的代码中,调用IA接口的地方都无需改动,
// 只需要将BAdaptor如下注入到Demo即可。
Demo d = new Demo(new BAdaptor(new B()));

兼容老版本接口

在做版本升级的时候,对于一些要废弃的接口,我们不直接将其删除,而是暂时保留,并且标注为 deprecated,并将内部实现逻辑委托为新的接口实现。这样做的好处是,让使用它的项目有个过渡期,而不是强制进行代码修改。这也可以粗略地看作适配器模式的一个应用场景。

举个例子:JDK1.0 中包含一个遍历集合容器的类 Enumeration。JDK2.0 对这个类进行了重构,将它改名为 Iterator 类,并且对它的代码实现做了优化。但是考虑到如果将 Enumeration 直接从 JDK2.0 中删除,那使用 JDK1.0 的项目如果切换到 JDK2.0,代码就会编译不通过。为了避免这种情况的发生,我们必须把项目中所有使用到 Enumeration 的地方,都修改为使用 Iterator 才行。

单独一个项目做 Enumeration 到 Iterator 的替换,勉强还能接受。但是,使用 Java 开发的项目太多了,一次 JDK 的升级,导致所有的项目不做代码修改就会编译报错,这显然是不合理的。这就是我们经常所说的不兼容升级。为了做到兼容使用低版本 JDK 的老代码,我们可以暂时保留 Enumeration 类,并将其实现替换为直接调用 Itertor。

代码示例如下所示:

public class Collections {
public static Emueration emumeration(final Collection c) {
return new Enumeration() {
Iterator i = c.iterator();
public boolean hasMoreElments() {
return i.hashNext();
}
public Object nextElement() {
return i.next():
}
}
}
}

适配不同格式的数据

适配器模式除了可以用于接口的适配外,还可以用在不同格式的数据间的适配。比如,把从不同征信系统拉取不同格式的征信数据,统一为相同的格式,以方便存储和使用。比如Java 中的 Arrays.asList() 也可以看作一种数据适配器,将数组类型的数据转化为集合容器类型。

List<String> stooges = Arrays.asList("Larry", "Moe", "Curly")

剖析适配器模式在 Java 日志中的应用

Java中有很多日志框架,在项目开发中,我们常用它们来打印日志信息。其中,比较常用的有 log4j、logback,以及 JDK 提供的 JUL(java.util.logging) 和 Apache 的JCL(Jakarta Commons Logging) 等。

大部分日志框架都提供了相似的功能,比如按照不同级别(debug、info、warn、erro……)打印日志等,但它们并没有实现统一的接口。这主要可能是历史原因,它不想JDBC那样,一开始就制定了数据库操作的接口规范。

如果我们只是开发一个自己用的项目,那什么日志框架都可以。但是如果我们开发的是一个集成到其他系统的组件、框架、类库等,那日志框架的选择就没有那么随意了。

比如,项目中用到的某个组件使用 log4j 来打印日志,而我们项目本身使用的是logback。将组件引入到项目中之后,我们的项目就相当于有两套日志打印框架。每种日志框架都有自己特有的配置方式。所以,我们要针对每种日志框架编写不同的配置文件(比如,日志存储的文件地址、打印日志的格式)。如果引入多个组件,每个组件使用的日志框架都不一样,那日志本身的管理工作就变得非常复杂。所以,为了解决这个问题,我们需要同一日志打印框架。

java中的Slf4j 这个日志框架就相当于 JDBC 规范,提供了一套打印日志的统一接口规范。不过,它只定义了接口,并没有提供具体的实现,需要配合其他日志框架架(log4j、logback……)来使用。

不仅如此,Slf4j 的出现晚于 JUL、JCL、log4j 等日志框架,所以,这些日志框架也不可牺牲掉版本兼容性,将接口改造成符合 Slf4j 接口规范。Slf4j 也事先考虑到了这个问题,所以它不仅仅提供了统一的接口定义,还提供了针对不同日志框架的适配器,对不同的日志框架的接口进行了二次封装,适配成统一的Slf4j接口定义。具体代码如下:

 // slf4j统一的接口定
package org.slf4j;
public interface Logger {
public boolean isTraceEnabled();
public void trace(String msg);
public void trace(String format, Object arg);
public void trace(String format, Object arg1, Object arg2);
public void trace(String format, Object[] argArray);
public void trace(String msg, Throwable t);
public boolean isDebugEnabled();
public void debug(String msg);
public void debug(String format, Object arg);
public void debug(String format, Object arg1, Object arg2)
public void debug(String format, Object[] argArray)
public void debug(String msg, Throwable t);
//...省略info、warn、error等一堆接口
}
// log4j日志框架的适配器
// Log4jLoggerAdapter实现了LocationAwareLogger接口,
// 其中LocationAwareLogger继承自Logger接口,
// 也就相当于Log4jLoggerAdapter实现了Logger接口。
package org.slf4j.impl;
public final class Log4jLoggerAdapter extends MarkerIgnoringBase implements LocationAwareLogger, Serializable {
final transient org.apache.log4j.Logger logger; // log4j
public boolean isDebugEnabled() {
return logger.isDebugEnabled();
}
public void debug(String msg) {
logger.log(FQCN, Level.DEBUG, msg, null);
}
public void debug(String format, Object arg) {
if (logger.isDebugEnabled()) {
FormattingTuple ft = MessageFormatter.format(format, arg);
logger.log(FQCN, Level.DEBUG, ft.getMessage(), ft.getThrowable());
}
}
public void debug(String format, Object arg1, Object arg2) {
if (logger.isDebugEnabled()) {
FormattingTuple ft = MessageFormatter.format(format, arg1, arg2);
logger.log(FQCN, Level.DEBUG, ft.getMessage(), ft.getThrowable());
}
}
public void debug(String format, Object[] argArray) {
if (logger.isDebugEnabled()) {
FormattingTuple ft = MessageFormatter.arrayFormat(format, argArray);
logger.log(FQCN, Level.DEBUG, ft.getMessage(), ft.getThrowable());
}
}
public void debug(String msg, Throwable t) {
logger.log(FQCN, Level.DEBUG, msg, t);
}
//...省略一堆接口的实现...
}

所以,在开发业务系统或者开发框架、组件的时候,我们统一使用 Slf4j 提供的接口来编写打印日志的代码,具体使用哪种日志框架实现(log4j、logback……),是可以动态地指定的,只需要将相应的 SDK 导入到项目中即可。

代理、桥接、装饰器、适配器 4 种设计模式的区别

代理、桥接、装饰器、适配器,这 4 种模式是比较常用的结构型设计模式。它们的代码结构非常相似。笼统来说,它们都可以称为 Wrapper 模式,也就是通过 Wrapper 类二次封装原始类。

尽管代码结构相似,但这 4 种设计模式的用意完全不同,也就是说要解决的问题、应用场景不同,这也是它们的主要区别。

  • 代理模式:代理模式在不改变原始类接口的条件下,为原始类定义一个代理类,主要目的是控制访问,而非加强功能。这是它跟装饰器模式最大的不同。
  • 桥接模式:桥接模式的目的是将接口部分和实现部分分离,从而让它们可以更加容易、也相对独立的加以改变。
  • 装饰器模式:装饰器模式在不改变原始类接口的情况下,对原始类功能进行增强,并且支持多个装饰器模式的嵌套使用。
  • 适配器模式:适配器模式是一种事后的补救策略。适配器提供跟原始类不同的接口,而代理模式、装饰器模式提供的都是跟原始类相同的接口。

总结

适配器模式是用来做适配,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。适配器模式有两种实现方式:类适配器和对象适配器。其中,类适配器使用继承关系来实现,对象适配器使用组合关系来实现。

一般来说,适配器模式可以看作一种“补偿模式”,用来补救设计上的缺陷。应用这种模式算是“无奈之举”,如果在设计初期,我们就能协调规避接口不兼容的问题,那这种模式就没有应用的机会了。那在实际的开发中,什么情况下才会出现接口不兼容呢?

  • 封装有缺陷的接口设计。
  • 统一多个类的接口设计。
  • 替换依赖的外部系统。
  • 兼容老版本接口。
  • 适配不同格式的数据。
责任编辑:姜华 来源: Java架构师进阶编程
相关推荐

2023-09-06 13:20:00

适配器模式兼容性

2020-10-25 08:56:21

适配器模式

2012-05-16 17:22:11

Java设计模式

2022-02-18 17:21:29

适配器模式客户端

2013-11-26 16:39:21

Android设计模式

2021-02-18 08:39:28

设计模式场景

2022-02-13 23:33:24

设计模式Java

2009-11-18 18:08:20

PHP适配器模式

2012-08-02 10:46:34

JavaAdapter模式

2024-02-22 12:13:49

适配器模式代码

2024-04-10 12:27:43

Python设计模式开发

2013-02-26 10:55:47

C#适配器设计模式

2021-02-16 08:16:09

适配器模式MybatisJava

2012-04-12 09:33:02

JavaScript

2022-12-12 09:20:59

适配器模式接口

2022-05-29 22:55:00

适配器设计模式

2021-08-16 17:15:19

设计模式Android适配器模式

2012-09-19 15:29:26

Worklight适配器

2023-08-15 11:07:37

适配器模式TypeScript

2009-12-21 10:26:09

Oracle适配器
点赞
收藏

51CTO技术栈公众号