社区编辑申请
注册/登录
关于人工智能的学习经验总结
人工智能
在现在这个时代,我们以前的学习方式不太适用了,如果想高效率的学习,需要转换一种学习方式,不妨 从实用的角度出发,遇到不会的再去查漏补缺,这样效率更高。

写在前面

我们现在处在了一个知识高速迭代的时代,在这个时代,你可能会有这样一种感觉,如果学习时从头到尾学一遍再使用(就像我们在学校学习时),会发现刚学完又出现了新的,等学了后面的理论还没实践,前面的又忘了。这样的学习方式,仿佛永远在学理论,自身没有进步,浪费了很多时间。

在刚入坑人工智能的时候,我也是这样的一种学习思路。先从机器学习开始,搜一些课就开始学习记笔记,然后再深度学习,等学完之后,深度学习又出了新的东西,又去学理论……如此反复。 表面上,我很努力,也学习到了很多理论,但是实际上,如果问这些理论的细节,我大脑里面根本就模糊不清 。这是因为,我学习到的这些知识,我都没有真正的用到它。没有机会实践出来。所以后来我开始反思,在现在这个时代,我们以前的学习方式不太适用了,如果想高效率的学习,需要转换一种学习方式,不妨 从实用的角度出发,遇到不会的再去查漏补缺,这样效率更高。

从实用的角度出发

学习知识的时候,一切从实用的角度出发,我们学习知识,都是要解决实际问题的,所以千万不要把过多的时间都放在理论之上,因为理论知识太多了,我拿入门机器学习和深度学习来讲,如果真的想做好人工智能,需要四个维度的知识(当然这是我自己的知识框架):

  • 编程基础(Python编程,数据分析基础:numpy,pandas,可视化,特征工程等, 深度学习框架TensorFlow,Pytorch)
  • 数学基础(数学,数理统计,线性代数)
  • 算法基础(内功算法:算法与数据结构, 外功算法:机器学习和深度学习算法)
  • 应用领域(CV, NLP,RS,预测,分类,聚类等)

对于一个刚入门的小白来讲,千万不要从头一个个的补充理论,这样你会发现,光数学这块都够你学习很长时间的,并且学习完之后忘了不说,还不会用。这就是我之前采用的学习方法。我确实浪费了一些时间。

后来我发现,其实,我们完全可以不用全知道上面这些维度所有的知识,只需要了解一些基本概念(这个还是要了解一遍的,要不然都不知道后面讲的是啥),就挑一些简单的知识进行学习,比如数学基础,由于大学里我们都学过这几门科目,所以这里其实不用那么仔细的再来一遍,一些概念比如积分,矩阵乘法,数理统计的一些知识有印象就可以了,编程基础,Python的基础语法学一些,numpy,pandas等基本的使用学一些(可参考我上一篇Pandas入门),可视化的东西学一点, 就是各个学点,然后就可以先上手了。

找一些项目上手练习,可能一开始确实很辛苦,因为很多东西,你并不知道说的是啥,比如过拟合,欠拟合等这些东西,然后去查,去找,补充到自己的知识框架里面,然后再学习,通过这种方式,时间长了,你会发现,你的知识框架会慢慢的变得丰富起来,并且由于总是在用,遗忘速度也没有那么快。这样还可以追赶新的技术。

这是一种 开始速度慢,但是加速度快的学习方式 ,但是出发之前,一些基本的概念,尤其是机器学习算法和深度学习算法,一些基本的概念还是必须要弄清楚明白的。上面说的这个一点, 也是很重要的,不仅要全,还要精。

MAS方法 – 出发之前我应该如何掌握知识

上面讲的是从实用的角度出发,就是我开始一个项目,从项目中学习新知识,但是 能出发的前提是有了一个基本的知识框架和基础了 

这个基本的知识应该如何学习呢?或者说跟着课程学习的时候应该如何学习呢?

这里记录一个在课程中学习到的一个高效的学习方法, 称之为 MAS方法 

  • Multi-Dimension:想要掌握一个事物,就要从多个角度去认识它。

如何建立多维连接呢?

  • 基础概念:这是基础,一定要吃透
  • 工具:掌握工具,锻炼实操
  • 题库:想真正的了解概念,就要多练,多动手

这个过程,就是从“思维”到“工具”再到“实践”的一个过程。如果说重要性,一定是“思维”最重要,因为思维是底层逻辑和框架,可以让我们一通百通,举一反三,但是思维修炼也是最难的。所以,我强调把学习重心放在工具和实践上,即学即用,不断积累成就感,思维也就慢慢养成了。

  • Ask:不懂就问,程序员大多都很羞涩,突破这一点,不懂就问最重要。
  • Sharing:最好的学习就是分享。用自己的语言讲出来,是对知识的进一步梳理。

修炼指南 – 从认知到实践再回到认知,如此反复

人与人最大的差别在于“认知”,所谓成长就是认知的升级。

很多人存在对“认知“的误解,认为认知不就是概念么?那么你有没有想过,针对同一个概念,为什么不同的人掌握的程度是不一样的呢?

我们只有把知识转化为自己的语言,它才真正变成了我们自己的东西。这个转换的过程,就是认知的过程。

那么如何提升自己的学习吸收能力呢?简单地说,就是要“知行合一”。

如果说认知是大脑,那么工具就好比我们的双手,数据工程师和算法科学家每天打交道最多的就是工具。如果你开始做数据分析的项目,你脑海中已经思考好了数据挖掘的算法模型,请牢记下面这两点原则。

1.不重复造轮子

举个数据采集的例子,很多公司,都有数据采集的需求,他们认为某些工具不能满足他们个性化的需求,因此决定招人专门做这项工作。而结果怎样呢?做了 1 年多的实践,工资投入几十万,结果发现 Bug 一大堆,最后还是选择了第三方工具。耗时耗力,还没什么成效。一个模型是否有相关的类库可以使用——这几乎是每个程序员入行被告知的第一条准则。

2.工具决定效率

“不要重复造轮子”意味着首先需要找到一个可以用的轮子,也就是工具。我们该如何选择呢?这取决于你要做的工作,工具没有好坏之分,只有适合与否。除去研究型的工作,大部分情况下,工程师会选择使用者最多的工具。因为:Bug 少、文档全、案例多。比如 Python 在处理数据挖掘上就有很多第三方库,这些库都有大量的用户和帮助文档可以帮助你来上手。

选择好工具之后,你要做的就是积累 “资产”了。我们很难记住大段的知识点,也背不下来工具的指令,但是我们通常能记住故事、做过的项目、做过的题目。这些题目和项目是你最先行的“资产”。

如何快速积累这些“资产”呢?三个字: 熟练度 。把题目完成只是第一步,关键在于训练我们工具使用的“熟练度”。

当熟练度增加的时候,你的思考认知模型也在逐渐提升。

总结

认知三部曲:从认知到工具,再到实战,然后如此反复。

不管是学习什么知识,我们都应该这样做:

  • 记录下你每天的认知。尤其是每次课程后,对知识点的自我理解。这些认知最好是通过博客或者笔记的方式整理,分享出来, 不懂的也一定要问 MAS 
  • 这些认知对应工具的哪些操作。用工具来表达你对知识点的掌握,并用自己的语言记录下这些操作笔记。
  • 做更多练习来巩固你的认知。我们学习的内容对于大部分外人来说,就像“开车”一样,很酷。我们学习的内容,对于要掌握的人来说,也像“开车”一样,其实并不难,而且很多人已经上路了。你需要的就是更多的练习。
责任编辑:张燕妮 来源: Datawhale
相关推荐

2022-07-26 11:27:40

人工智能AIOps

2021-07-19 10:33:21

2022-07-20 11:32:09

人工智能人工智能算法

2022-06-20 11:05:58

2022-03-28 18:48:42

人工智能AI

2022-04-25 11:30:16

人工智能人脸识别

2022-06-21 14:37:46

AI经验发展

2022-04-06 11:55:12

模型机器学习训练

2022-03-25 09:00:00

人工智能工作失业

2020-11-20 14:57:37

人工智能Gartner学习

2021-12-02 10:18:12

2020-05-12 15:00:51

教育人工智能学习

2019-03-29 17:30:32

2022-02-12 12:36:43

2019-08-22 19:19:32

人工智能AI

2020-12-22 11:04:05

人工智能AI机器学习

2021-03-30 13:45:00

人工智能

2019-03-06 09:00:00

机器学习人工智能

2021-10-09 21:00:15

2021-03-15 10:43:36

人工智能AI深度学习

同话题下的热门内容

基于人工智能技术快速构建三维模型AI赋能视频直播,如何提升系统安全性?AI到底是如何工作的?特斯拉全自动驾驶三次撞上儿童假人,撞后没停重新加速面向推荐的汽车知识图谱构建数据闭环研究:自动驾驶发展从技术驱动转向数据驱动非科班AI小哥火了:他没有ML学位,却拿到DeepMind的offer专访字节跳动王明轩:机器翻译和人工翻译实质是两个赛道 | T前线

编辑推荐

转转公司架构算法部孙玄:AI下的微服务架构Facebook开源相似性搜索类库Faiss,超越已知最快算法8.5倍运维:对不起,这锅,我们不背快消品图像识别丨无人店背后的商品识别技术最全面的百度NLP自然语言处理技术解析
我收藏的内容
点赞
收藏

51CTO技术栈公众号