社区编辑申请
注册/登录
九大数据分析方法:Mece法
大数据 数据分析
MECE是(Mutually Exclusive Collectively Exhaustive)的缩写,指的是“相互独立,完全穷尽”的分类原则。通过MECE方法对问题进行分类,能做到清晰准确,从而容易找到答案。

本文转载自微信公众号「码工小熊」,作者小熊妹。转载本文请联系码工小熊公众号。

大家好,我是爱学习的小xiong熊妹。

今天继续分享九大数据分析方法系列。上一篇说到,当我们要分析的问题,受到太多因素的影响的时候,经常会不知道从哪里下手。这时候,需要把各种影响因素梳理清楚,就需要用到MECE

一、什么是MECE

MECE是(Mutually Exclusive Collectively Exhaustive)的缩写,指的是“相互独立,完全穷尽”的分类原则。通过MECE方法对问题进行分类,能做到清晰准确,从而容易找到答案。

很多小伙伴听到MECE,都会眉头一皱,大呼:

“好难呀!”

“怎么做到独立穷尽!”

“是不是要懂得世界上所有道理,才能穷尽?”

其实完全不是,最好的做到独立、穷尽的办法,就是二分法。举个简单的例子,门店的店长抱怨:“遇到个刮风下雨打雷,街上没有人了,生意就很差”。这里的刮风下雨打雷,就不符合MECE原则。因为这三者之间既有关系,又有区别(如下图)

那么怎么做到MECE呢?

二、如何做到MECE

首先要明确目标:其实我们关心的不是天气咋样,而是天气会不会影响人流。那么在对影响因素分类的时候,就得先把最大因素分离出来,再分离小的因素。由大到小,逐步剥洋葱。

比如刮风、下雨、大雷三件事,刮风除非是台风天,否则很少能影响到人们出行。大雷往往和下雨相伴,干打雷不下雨情况很少。因此相比之下,刮风、下雨、大雷里边,下雨影响最大,可以第一个分离出来。

这样,通过下雨/非下雨的区分,就做到了独立、穷尽。是和否的二分类,是很容易做到独立穷尽的。

三、如何利用MECE做分析

但是仅区分是否下雨并不能进行分析。如果下的雨很小,也不会影响人流。我们还需要更细致的划分,才能分析问题。好在,天气预报软件能给出具体的气象信息,包括温度、湿度、降雨量等等,可供分析使用。

这里有两种深入方法:

  • 用相关分析法,收集降雨量指标,之后寻找降雨量指标与客流之间关系。比如收集了10个下雨天气的客户流量数据,可以做散点图,寻找相关关系。这种做法,灵活性较大,可以在没有经验积累的情况下总结出规律。
  • 用标签分析法,不纠结具体降雨量多少,而是直接用气象局给的暴雨警报标签(黄色、橙色、红色)。然后看不同标签下的客流情况这种做法,直接采用现成标签,在有标签积累的情况下更好用,很直观。

理论上,两种方法都可行。最后选哪个,主要看

  • 从数据来源上,那种方法更简单可靠
  • 从结果上,那种方法区分度更明显(如下图)

经过这一步,就又进行了第二级拆分,还可以类似的,做三级/四级拆分(如下图)

总之,通过逐层拆分,能帮助我们看清问题真实发生原因,就算达到了目的。

四、MECE法综合运用

上边只是个简单的例子,实际上,作为分析问题的基本原则,MECE法是一种基础的分析方法。现实中相当多的问题,都是各种因素交织在一起,因此需要用MECE法,把可能的影响因素一一列出来,然后再逐一确认。

比如影响门店业绩的,除了天气,还有:

  • 门店位置
  • 开业时间
  • 货物供应
  • 促销政策

并且这些因素会相互叠加,因此在分析的时候,需要用MECE法,逐级选取重点因素,剥洋葱一样找到问题核心。后续再慢慢跟大家分享,如何用MECE法构建复杂的分析逻辑。

五、MECE法不足之处

MECE法最大不足之处,在于并非所有影响因素,都能直接用数据观察到。举个简单的例子:用户为什么会流失?一般在用户已经3个月/6个月没有互动的时候标记为流失。但实际上,在用户被标记为流失以前,可能已经2个月没有登录过了,也没有留下什么数据记录。

那么,到底为什么会流失呢?

  • 因为产品体验不好?
  • 因为缺少促销活动?
  • 因为服务没有到位?
  • 因为用户根本没有需求?

这些复杂的因素,都随着用户数据的缺失,变得难以解答。即使做出来了很好的MECE分析,也没有数据佐证。

类似的场景还有很多,比如新用户获取、新产品上线这种新业务,都缺少数据积累。此时需要用另外一种思路解决问题:配合运营活动/产品改版,用实验的方法,把真实影响因素测试出来。这样既能弥补数据的不足,又能直接获得解决问题的手段,一举两得。

 

不过这些测试类方法,并不是直接从数据中解读出含义,而是先设计实验再看结果,因此没有和九大分析方法归为一类,小伙伴们还想看的话,记得转发+点赞+在看三连,支持下小熊妹哦,下一部分来更新《8个故事,看懂数据测试》敬请期待哦。

 

责任编辑:武晓燕 来源: 码工小熊
相关推荐

2022-05-18 23:42:08

网络安全安全分析工具

2022-05-20 14:54:33

数据安全数字化转型企业

2022-05-09 15:08:56

存储厂商NFV领域华为

2022-05-12 13:44:35

2022-05-19 19:26:33

区块链大数据数据分析

2022-05-17 15:51:32

数据中心运维能力基础设施

2022-04-25 14:06:28

数据分析人工智能机器学习

2022-05-17 14:03:42

勒索软件远程工作

2022-04-17 23:02:08

数据分析数字化转型人工智能

2022-05-11 14:48:33

腾讯云寿险民生保险

2022-05-16 10:49:28

网络协议数据

2022-05-10 14:11:05

网络安全网络犯罪

2022-05-11 14:05:11

区块链网络安全存储

2022-05-25 16:52:55

数据智能瑞数信息API

2022-04-21 10:49:30

智慧城市物联网

2022-05-24 09:57:32

微软开源AI 驱动

2022-04-29 13:15:13

数据中台管控

2022-05-24 14:26:11

云原生数据库云架构

2022-05-20 08:17:43

Java日志

2022-05-17 11:52:55

同话题下的热门内容

2022年优秀预测分析工具和软件大数据技术的成功案例及趋势使用替代数据的五个隐性成本为什么不能忽视建筑物中的数据分析?数据驱动业务的18个有效策略

编辑推荐

什么是数据分析的漏斗模型?数据分析师还吃香吗?用数据告诉你对比解读五种主流大数据架构的数据分析能力《狄仁杰之四大天王》影评分析(爬虫+词云+热力图)22个免费的数据可视化和分析工具推荐
我收藏的内容
点赞
收藏

51CTO技术栈公众号