社区编辑申请
注册/登录
张亚勤:对于产业来讲,深度学习的黄金时代刚刚开始
人工智能 CIOAge
随着数字化3.0的到来,未来十年许多行业都将经历构造转变。这场数字化的新浪潮提供了历史性的机会,可以通过先进的机器学习算法,增强的计算能力,5G的新基础设施,神经形态计算来改变现有的工业格局。

今天,张亚勤教授在CNCC 2020上带来以“智能技术趋势”为主题的演讲,随着数字化3.0的到来,张教授重置技术与工业的角度讨论数字化的新浪潮,并分享了他在人工智能、新计算体系和通讯架构等方面的见解。

以下内容在张亚勤教授的演讲基础上略有改动。

数字化新浪潮带来了历史性的变革:一切都在数字化

张亚勤表示,随着数字化3.0的到来,未来十年许多行业都将经历构造转变。这场数字化的新浪潮提供了历史性的机会,可以通过先进的机器学习算法,增强的计算能力,5G的新基础设施,神经形态计算来改变现有的工业格局。

过去我们做计算机最大的现象是数字化,数字化1.0在80年代中期就开始了,那个时候更多的是把内容数字化,有语音、音乐、视频、图像,包括后面的HDTV和Video,整个发展相当快。

数字化2.0在90年代中期开始,由于内容数字化,产生了消费者互联网,掀起了好几轮浪潮。同时企业也在数字化,包括ERP、CRM、工作流以及商业智能,到了后面有各种数字仓库、云,各种各样。但在软件领域,消费软件产品市场在中国一直没有真正到一个主流。

现在进入全新的数字化3.0,包括互联网物理化。首先是物理世界数字化,我们的车、船,飞行器件数字化,路、交通等,城市在数字化,家庭在数字化,工业、车间、电网、机器,乃至货币都在数字化,可以看到物理世界和数字世界形成一对一的影射。过去我们讲数字高速公路,现在真的高速公路也变成数字。

可以看到,由于物理世界数字化,产生的信息量和数据达到了天文级,比如无人车,每个人每天可以产生10个T的数据。另外一个特点就是,现在数据大部分不是给人看,而是让机器做决策,比如无人驾驶。

不像第一代和第二代,我们的生物世界也在进行数字化,大脑、身体,每个器官,甚至包括DNA还有蛋白质,通过脑和世界的接口,这个数据量更大,比我们物理世界更大。这个容量级很难用正常的方式去处理计算。

现在这个世界是信息物理和生物世界的融合,先是数字化,然后连到一起,最后才是智能化。

AI变革带来产业新机遇

5G出现之后,的确带来很多新的可能。5G是第一次把三网真正在应用层统一了,这是一件大事,5G让传输的速度更快、延迟更低。

任何新的技术需要时间,大家要有一些耐心,5G刚刚发展速度就已经很快了,张教授表示相信在未来三到五年5G能够带来巨大的变革,不仅是对用户,更多的是对于工业和产业。

张教授还用两张图举了两个例子,一是百度昆仑芯片路线图,第一代昆仑AI芯片已经达到14nm工艺、2.5D封装、512G的带宽。明年会出来第二代,7nm,耗能减少很多,性能将提高3倍左右。

 

另外一个例子是地平线自动驾驶芯片的路线图。可以看到,随着Level的提升,规划越来越困难,需要很强的功能,很好的稳定性。地平线在这方面做了很多的工作,芯片不管是从质量、性能、耗能上都和现在的国际芯片(像特斯拉的SSD)达到同样的性能,甚至更好。

我们可以看到,技术的发展确实给IT产业以及很多行业带来了新的机遇。首先IT产业本身是最大的受益者。不管是芯片技术、操作系统、云平台还是应用,都在不断的快速迭代。更重要的是,它改变甚至颠覆了目前的产业,教育、医疗、金融、制造,每个行业都会有AI的成分。

如今的AI就像20年前的互联网,能够融入到每个行业。

再有就是创造新的行业。张亚勤教授认为自动驾驶、工业物联网、AI医疗生物计算,这三个领域很有潜力,他自己也比较有兴趣。

最后,张亚勤提到,希望他成立的智能产业研究院能够成为国际化、智能化、产业化的应用研究机构,能够吸引与培养出有国际视野的CTO和顶级的架构师,并利用核心技术突破孵化出一些新企业。

寻找下一轮AI的突破口;对于产业来讲,深度学习的黄金时代刚刚开始

下面这张图涵盖了人工智能60年上下。可以看到,在左半部分讲到人工智能发展的不同流派,未来最大的可能是借各种流派之长,创造新的一些算法,有逻辑符号也有数据和知识,要借鉴人类的进化,大脑的特点。

现在,不管是做研究的也好,做产业的也好,都在思考下一轮人工智能突破在什么地方,特别是现在深度学习,经过十几年的研究和应用,已经到了一个稳定期。现在主要的发展不仅是靠算法,更多的靠计算的算力。

张亚勤教授认为,在研究方面、算法方面,还有一些可挖掘之处,但是已经到了相对平台期。不过对于产业来讲,深度学习的黄金时代才刚刚开始,还有至少十年的时间可以深入到每个不同的行业里。

他还在演讲中提到,人工智能当下遇到的挑战主要是隐私、数据保护和伦理工作。前段时间,张教授在美国碰到一个小团队在做通用人工智能。他们的主要的任务是创造一个有自主意识的AI。他自己表示坚决反对。

我们再看看最基本的东西,计算和通讯基本的范式。

第一是香农定律,包含三个方面,熵、信道容量和速率编码。定义了三个极限,无损压缩极限,信道传输极限,有损压缩极限。现在这几部分基本上都快接近极限了。

第二个是冯诺伊曼架构,做计算机60年来都采用这个架构。冯诺伊曼架构相当简单和漂亮,就是一个程序储存的原理。但在这几年,特别是在深度学习上已经有了很大的限制。

第三个是摩尔定律,想必这个大家都比较熟悉,原来摩尔定律中提到的每18个月、24个月的发展速度也降下来了。

我们需要突破这三个瓶颈。

要让新的计算体系和通讯架构突破体系架构的限制。深度学习需要新的架构,架构包括数据流、计算模式。深度学习领域需要很多优化,还有高速的储存。这些东西和传统的架构不一样。

责任编辑:未丽燕 来源: 人工智能和大数据
相关推荐

2022-05-18 10:58:36

LinuxKali Linux

2022-05-17 14:03:42

勒索软件远程工作

2022-05-20 14:54:33

数据安全数字化转型企业

2022-05-09 15:08:56

存储厂商NFV领域华为

2022-05-11 15:08:52

驱动开发系统移植

2022-05-16 10:36:08

GitHub开源项目

2022-05-17 15:51:32

数据中心运维能力基础设施

2022-04-17 23:09:07

深度学习人工智能芯片

2022-05-14 08:05:18

Linux内存管理

2022-05-16 10:49:28

网络协议数据

2022-05-11 08:23:54

自动化测试软件测试

2022-05-24 12:05:36

Testin云测试

2022-04-26 05:49:45

物联网OTIT

2022-05-05 15:56:43

数字化转型锐捷网络

2022-05-12 14:44:38

数据中心IT云计算

2022-05-24 12:42:24

物联网

2022-05-24 07:51:05

测试模型测试单元测试

2022-05-20 14:08:13

Web3元宇宙区块链

2022-05-24 08:21:16

数据安全API

2022-05-20 16:50:33

区块链Web3加密资产

同话题下的热门内容

炼丹速度×7!你的Mac电脑也能在PyTorch训练中用GPU加速了阿里副总裁、达摩院副院长金榕被曝离职!AI科学家集体“逃离“大厂…信息抽取里程碑式突破!NLP要迎来大规模落地了?如何让程序员更容易使用机器学习骗过83%网友!图像生成界天花板DALL-E 2竟然通过了图灵测试?美团图神经网络训练框架的实践和探索超优的纯文本模型?GPT-4蓄势待发什么时候使用机器学习

编辑推荐

转转公司架构算法部孙玄:AI下的微服务架构Facebook开源相似性搜索类库Faiss,超越已知最快算法8.5倍运维:对不起,这锅,我们不背快消品图像识别丨无人店背后的商品识别技术最全面的百度NLP自然语言处理技术解析
我收藏的内容
点赞
收藏

51CTO技术栈公众号