路透社文章的文本数据分析与可视化

新闻
本文将帮助你获得构建可视化和解释文本数据所需的信息。

 当我要求你解释文本数据时,你会怎幺做?你将采取什幺步骤来构建文本可视化?

本文将帮助你获得构建可视化和解释文本数据所需的信息。

[[345088]]

从文本数据中获得的见解将有助于我们发现文章之间的联系。它将检测趋势和模式。对文本数据的分析将排除噪音,发现以前未知的信息。

这种分析过程也称为探索性文本分析(ETA)。运用K-means、Tf-IDF、词频等方法对这些文本数据进行分析。此外,ETA在数据清理过程中也很有用。

我们还使用Matplotlib、seaborn和Plotly库将结果可视化到图形、词云和绘图中。

在分析文本数据之前,请完成这些预处理任务。

从数据源检索数据

有很多非结构化文本数据可供分析。你可以从以下来源获取数据。

  1. 来自Kaggle的Twitter文本数据集。
  2. Reddit和twitter数据集使用API。
  3. 使用Beautifulsoup从网站上获取文章、。

我将使用路透社的SGML格式的文章。为了便于分析,我将使用beauthoulsoup库从数据文件中获取日期、标题和文章正文。

使用下面的代码从所有数据文件中获取数据,并将输出存储在单个CSV文件中。

  1. from bs4 import BeautifulSoup 
  2.  
  3. import pandas as pd 
  4.  
  5. import csv 
  6.  
  7. article_dict = {} 
  8.  
  9. i = 0 
  10.  
  11. list_of_data_num = [] 
  12.  
  13. for j in range(0,22): 
  14.  
  15. if j < 10
  16.  
  17. list_of_data_num.append("00" + str(j)) 
  18.  
  19. else
  20.  
  21. list_of_data_num.append("0" + str(j)) 
  22.  
  23. # 循环所有文章以提取日期、标题和文章主体 
  24.  
  25. for num in list_of_data_num: 
  26.  
  27. try
  28.  
  29. soup = BeautifulSoup(open("data/reut2-" + num + ".sgm"), features='lxml'
  30.  
  31. except: 
  32.  
  33. continue 
  34.  
  35. print(num) 
  36.  
  37. data_reuters = soup.find_all('reuters'
  38.  
  39. for data in data_reuters: 
  40.  
  41. article_dict[i] = {} 
  42.  
  43. for date in data.find_all('date'): 
  44.  
  45. try
  46.  
  47. article_dict[i]["date"] = str(date.contents[0]).strip() 
  48.  
  49. except: 
  50.  
  51. article_dict[i]["date"] = None 
  52.  
  53. # print(date.contents[0]) 
  54.  
  55. for title in data.find_all('title'): 
  56.  
  57. article_dict[i]["title"] = str(title.contents[0]).strip() 
  58.  
  59. # print(title.contents) 
  60.  
  61. for text in data.find_all('text'): 
  62.  
  63. try
  64.  
  65. article_dict[i]["text"] = str(text.contents[4]).strip() 
  66.  
  67. except: 
  68.  
  69. article_dict[i]["text"] = None 
  70.  
  71. i += 1 
  72.  
  73. dataframe_article = pd.DataFrame(article_dict).T 
  74.  
  75. dataframe_article.to_csv('articles_data.csv', header=True, index=False, quoting=csv.QUOTE_ALL) 
  76.  
  77. print(dataframe_article) 

还可以使用Regex和OS库组合或循环所有数据文件。

每篇文章的正文以<Reuters>开头,因此使用find_all(‘reuters’)。

你也可以使用pickle模块来保存数据,而不是CSV。

清洗数据

在本节中,我们将从文本数据中移除诸如空值、标点符号、数字等噪声。首先,我们删除文本列中包含空值的行。然后我们处理另一列的空值。

  1. import pandas as pd import re 
  2.  
  3. articles_data = pd.read_csv(‘articles_data.csv’) print(articles_data.apply(lambda x: sum(x.isnull()))) articles_nonNull = articles_data.dropna(subset=[‘text’]) articles_nonNull.reset_index(inplace=True) 
  4.  
  5. def clean_text(text): 
  6.  
  7. ‘’’Make text lowercase, remove text in square brackets,remove \n,remove punctuation and remove words containing numbers.’’’ 
  8.  
  9. text = str(text).lower() 
  10.  
  11. text = re.sub(‘<.*?>+’, ‘’, text) 
  12.  
  13. text = re.sub(‘[%s]’ % re.escape(string.punctuation), ‘’, text) 
  14.  
  15. text = re.sub(‘\n’, ‘’, text) 
  16.  
  17. text = re.sub(‘\w*\d\w*’, ‘’, text) 
  18.  
  19. return text 
  20.  
  21. articles_nonNull[‘text_clean’]=articles_nonNull[‘text’]\ 
  22.  
  23. .apply(lambda x:clean_text(x)) 

articles_data = pd.read_csv(‘articles_data.csv’) print(articles_data.apply(lambda x: sum(x.isnull()))) articles_nonNull = articles_data.dropna(subset=[‘text’]) articles_nonNull.reset_index(inplace=True)

def clean_text(text):

‘’’Make text lowercase, remove text in square brackets,remove \n,remove punctuation and remove words containing numbers.’’’

text = str(text).lower()

text = re.sub(‘<.*?>+’, ‘’, text)

text = re.sub(‘[%s]’ % re.escape(string.punctuation), ‘’, text)

text = re.sub(‘\n’, ‘’, text)

text = re.sub(‘\w*\d\w*’, ‘’, text)

return text

articles_nonNull[‘text_clean’]=articles_nonNull[‘text’]\

.apply(lambda x:clean_text(x))

当我们删除文本列中的空值时,其他列中的空值也会消失。

我们使用re方法去除文本数据中的噪声。

数据清理过程中采取的步骤可能会根据文本数据增加或减少。因此,请仔细研究你的文本数据并相应地构建clean_text()方法。

随着预处理任务的完成,我们将继续分析文本数据。

让我们从分析开始。

1.路透社文章篇幅

我们知道所有文章的篇幅不一样。因此,我们将考虑长度等于或超过一段的文章。根据研究,一个句子的平均长度是15-20个单词。一个段落应该有四个句子。

  1. articles_nonNull[‘word_length’] = articles_nonNull[‘text’].apply(lambda x: len(str(x).split())) print(articles_nonNull.describe()) 
  2.  
  3. articles_word_limit = articles_nonNull[articles_nonNull[‘word_length’] > 60
  4.  
  5. plt.figure(figsize=(12,6)) 
  6.  
  7. p1=sns.kdeplot(articles_word_limit[‘word_length’], shade=True, color=”r”).set_title(‘Kernel Distribution of Number Of words’) 

我删除了那些篇幅不足60字的文章。

字长分布是右偏的。

大多数文章有150字左右。

包含事实或股票信息的路透社文章用词较少。

2.路透社文章中的常用词

在这一部分中,我们统计了文章中出现的字数,并对结果进行了分析。我们基于N-gram方法对词数进行了分析。N-gram是基于N值的单词的出现。

我们将从文本数据中删除停用词。因为停用词是噪音,在分析中没有太大用处。

(1)最常见的单字单词(N=1)

让我们在条形图中绘制unigram单词,并为unigram单词绘制词云。

  1. from gensim.parsing.preprocessing 
  2.  
  3. import remove_stopwords 
  4.  
  5. import genism 
  6.  
  7. from wordcloud import WordCloud 
  8.  
  9. import numpy as np 
  10.  
  11. import random 
  12.  
  13. # 从gensim方法导入stopwords到stop_list变量 
  14.  
  15. # 你也可以手动添加stopwords 
  16.  
  17. gensim_stopwords = gensim.parsing.preprocessing.STOPWORDS 
  18.  
  19. stopwords_list = list(set(gensim_stopwords)) 
  20.  
  21. stopwords_update = ["mln""vs","cts","said","billion","pct","dlrs","dlr"
  22.  
  23. stopwords = stopwords_list + stopwords_update 
  24.  
  25. articles_word_limit['temp_list'] = articles_word_limit['text_clean'].apply(lambda x:str(x).split()) 
  26.  
  27. # 从文章中删除停用词 
  28.  
  29. def remove_stopword(x): 
  30.  
  31. return [word for word in x if word not in stopwords] 
  32.  
  33. articles_word_limit['temp_list_stopw'] = articles_word_limit['temp_list'].apply(lambda x:remove_stopword(x)) 
  34.  
  35. # 生成ngram的单词 
  36.  
  37. def generate_ngrams(text, n_gram=1): 
  38.  
  39. ngrams = zip(*[text[i:] for i in range(n_gram)]) 
  40.  
  41. return [' '.join(ngram) for ngram in ngrams] 
  42.  
  43.  
  44.  
  45. article_unigrams = defaultdict(int
  46.  
  47. for tweet in articles_word_limit['temp_list_stopw']: 
  48.  
  49. for word in generate_ngrams(tweet): 
  50.  
  51. article_unigrams[word] += 1 
  52.  
  53.  
  54.  
  55. article_unigrams_df = pd.DataFrame(sorted(article_unigrams.items(), key=lambda x: x[1])[::-1]) 
  56.  
  57. N=50 
  58.  
  59. # 在路透社的文章中前50个常用的unigram 
  60.  
  61. fig, axes = plt.subplots(figsize=(1850)) 
  62.  
  63. plt.tight_layout() 
  64.  
  65. sns.barplot(y=article_unigrams_df[0].values[:N], x=article_unigrams_df[1].values[:N], color='red'
  66.  
  67. axes.spines['right'].set_visible(False) 
  68.  
  69. axes.set_xlabel(''
  70.  
  71. axes.set_ylabel(''
  72.  
  73. axes.tick_params(axis='x', labelsize=13
  74.  
  75. axes.tick_params(axis='y', labelsize=13
  76.  
  77. axes.set_title(f'Top {N} most common unigrams in Reuters Articles', fontsize=15
  78.  
  79. plt.show() 
  80.  
  81. # 画出词云 
  82.  
  83. def col_func(word, font_size, position, orientation, font_path, random_state): 
  84.  
  85. colors = ['#b58900''#cb4b16''#dc322f''#d33682''#6c71c4'
  86.  
  87. '#268bd2''#2aa198''#859900'
  88.  
  89. return random.choice(colors) 
  90.  
  91. fd = { 
  92.  
  93. 'fontsize''32'
  94.  
  95. 'fontweight' : 'normal'
  96.  
  97. 'verticalalignment''baseline'
  98.  
  99. 'horizontalalignment''center'
  100.  
  101.  
  102. wc = WordCloud(width=2000, height=1000, collocations=False, 
  103.  
  104. background_color="white"
  105.  
  106. color_func=col_func, 
  107.  
  108. max_words=200
  109.  
  110. random_state=np.random.randint(18)) .generate_from_frequencies(article_unigrams) 
  111.  
  112. fig, ax = plt.subplots(figsize=(20,10)) 
  113.  
  114. ax.imshow(wc, interpolation='bilinear'
  115.  
  116. ax.axis("off"
  117.  
  118. ax.set_title(‘Unigram Words of Reuters Articles’, pad=24, fontdict=fd) 
  119.  
  120. plt.show() 

Share, trade, stock是一些最常见的词汇,它们是基于股票市场和金融行业的文章。

因此,我们可以说,大多数路透社文章属于金融和股票类。

(2)最常见的Bigram词(N=2)

让我们为Bigram单词绘制条形图和词云。

  1. article_bigrams = defaultdict(int
  2.  
  3. for tweet in articles_word_limit[‘temp_list_stopw’]: 
  4.  
  5. for word in generate_ngrams(tweet, n_gram=2): 
  6.  
  7. article_bigrams[word] += 1 
  8.  
  9.  
  10.  
  11. df_article_bigrams=pd.DataFrame(sorted(article_bigrams.items(), 
  12.  
  13. key=lambda x: x[1])[::-1]) 
  14.  
  15.  
  16.  
  17. N=50 
  18.  
  19. # 前50个单词的柱状图 
  20.  
  21. fig, axes = plt.subplots(figsize=(1850), dpi=100
  22.  
  23. plt.tight_layout() 
  24.  
  25. sns.barplot(y=df_article_bigrams[0].values[:N], 
  26.  
  27. x=df_article_bigrams[1].values[:N], 
  28.  
  29. color=’red’) 
  30.  
  31. axes.spines[‘right’].set_visible(False) 
  32.  
  33. axes.set_xlabel(‘’) 
  34.  
  35. axes.set_ylabel(‘’) 
  36.  
  37. axes.tick_params(axis=’x’, labelsize=13
  38.  
  39. axes.tick_params(axis=’y’, labelsize=13
  40.  
  41. axes.set_title(f’Top {N} most common Bigrams in Reuters Articles’, 
  42.  
  43. fontsize=15
  44.  
  45. plt.show() 
  46.  
  47. #词云 
  48.  
  49. wc = WordCloud(width=2000, height=1000, collocations=False, 
  50.  
  51. background_color=”white”, 
  52.  
  53. color_func=col_func, 
  54.  
  55. max_words=200
  56.  
  57. random_state=np.random.randint(1,8))\ 
  58.  
  59. .generate_from_frequencies(article_bigrams) 
  60.  
  61.  
  62.  
  63. fig, ax = plt.subplots(figsize=(20,10)) 
  64.  
  65. ax.imshow(wc, interpolation=’bilinear’) 
  66.  
  67. ax.axis(“off”) 
  68.  
  69. ax.set_title(‘Trigram Words of Reuters Articles’, pad=24
  70.  
  71. fontdict=fd) 
  72.  
  73. plt.show() 
  74.  
  75. Bigram比unigram提供更多的文本信息和上下文。比如,share loss显示:大多数人在股票上亏损。 
  76.  
  77. 3.最常用的Trigram词 
  78.  
  79. 让我们为trigma单词绘制条形图和词云。 
  80.  
  81. article_trigrams = defaultdict(int
  82.  
  83. for tweet in articles_word_limit[‘temp_list_stopw’]: 
  84.  
  85. for word in generate_ngrams(tweet, n_gram=3): 
  86.  
  87. article_trigrams[word] += 1 
  88.  
  89. df_article_trigrams = pd.DataFrame(sorted(article_trigrams.items(), 
  90.  
  91. key=lambda x: x[1])[::-1]) 
  92.  
  93.  
  94.  
  95. N=50 
  96.  
  97. # 柱状图的前50个trigram 
  98.  
  99. fig, axes = plt.subplots(figsize=(1850), dpi=100
  100.  
  101. plt.tight_layout() 
  102.  
  103. sns.barplot(y=df_article_trigrams[0].values[:N], 
  104.  
  105. x=df_article_trigrams[1].values[:N], 
  106.  
  107. color=’red’) 
  108.  
  109. axes.spines[‘right’].set_visible(False) 
  110.  
  111. axes.set_xlabel(‘’) 
  112.  
  113. axes.set_ylabel(‘’) 
  114.  
  115. axes.tick_params(axis=’x’, labelsize=13
  116.  
  117. axes.tick_params(axis=’y’, labelsize=13
  118.  
  119. axes.set_title(f’Top {N} most common Trigrams in Reuters articles’, 
  120.  
  121. fontsize=15
  122.  
  123. plt.show() 
  124.  
  125. # 词云 
  126.  
  127. wc = WordCloud(width=2000, height=1000, collocations=False, 
  128.  
  129. background_color=”white”, 
  130.  
  131. color_func=col_func, 
  132.  
  133. max_words=200
  134.  
  135. random_state=np.random.randint(1,8)).generate_from_frequencies(article_trigrams) 
  136.  
  137. fig, ax = plt.subplots(figsize=(20,10)) 
  138.  
  139. ax.imshow(wc, interpolation=’bilinear’) 
  140.  
  141. ax.axis(“off”) 
  142.  
  143. ax.set_title(‘Trigrams Words of Reuters Articles’, pad=24
  144.  
  145. fontdict=fd) 
  146.  
  147. plt.show() 

大多数的三元组都与双元组相似,但无法提供更多信息。所以我们在这里结束这一部分。

(3)文本数据的命名实体识别(NER)标记

NER是从文本数据中提取特定信息的过程。在NER的帮助下,我们从文本中提取位置、人名、日期、数量和组织实体。在这里了解NER的更多信息。我们使用Spacy python库来完成这项工作。

  1. import spacy 
  2.  
  3. from matplotlib import cm 
  4.  
  5. from matplotlib.pyplot import plt 
  6.  
  7. nlp = spacy.load('en_core_web_sm'
  8.  
  9. ner_collection = {"Location":[],"Person":[],"Date":[],"Quantity":[],"Organisation":[]} 
  10.  
  11. location = [] 
  12.  
  13. person = [] 
  14.  
  15. date = [] 
  16.  
  17. quantity = [] 
  18.  
  19. organisation = [] 
  20.  
  21. def ner_text(text): 
  22.  
  23. doc = nlp(text) 
  24.  
  25. ner_collection = {"Location":[],"Person":[],"Date":[],"Quantity":[],"Organisation":[]} 
  26.  
  27. for ent in doc.ents: 
  28.  
  29. if str(ent.label_) == "GPE"
  30.  
  31. ner_collection['Location'].append(ent.text) 
  32.  
  33. location.append(ent.text) 
  34.  
  35. elif str(ent.label_) == "DATE"
  36.  
  37. ner_collection['Date'].append(ent.text) 
  38.  
  39. person.append(ent.text) 
  40.  
  41. elif str(ent.label_) == "PERSON"
  42.  
  43. ner_collection['Person'].append(ent.text) 
  44.  
  45. date.append(ent.text) 
  46.  
  47. elif str(ent.label_) == "ORG"
  48.  
  49. ner_collection['Organisation'].append(ent.text) 
  50.  
  51. quantity.append(ent.text) 
  52.  
  53. elif str(ent.label_) == "QUANTITY"
  54.  
  55. ner_collection['Quantity'].append(ent.text) 
  56.  
  57. organisation.append(ent.text) 
  58.  
  59. else
  60.  
  61. continue 
  62.  
  63. return ner_collection 
  64.  
  65. articles_word_limit['ner_data'] = articles_word_limit['text'].map(lambda x: ner_text(x)) 
  66.  
  67.  
  68.  
  69. location_name = [] 
  70.  
  71. location_count = [] 
  72.  
  73. for i in location_counts.most_common()[:10]: 
  74.  
  75. location_name.append(i[0].upper()) 
  76.  
  77. location_count.append(i[1]) 
  78.  
  79. fig, ax = plt.subplots(figsize=(158), dpi=100
  80.  
  81. ax.barh(location_name, location_count, alpha=0.7
  82.  
  83. # width = 0.5
  84.  
  85. color=cm.Blues([i / 0.00525 for i in [ 0.002080.002350.002810.003170.00362
  86.  
  87. 0.003710.005250.006790.007610.00833]]) 
  88.  
  89.  
  90. plt.rcParams.update({'font.size'10}) 
  91.  
  92. rects = ax.patches 
  93.  
  94. for i, label in enumerate(location_count): 
  95.  
  96. ax.text(label+100 , i, str(label), size=10, ha='center', va='center'
  97.  
  98. ax.text(01.02'Count of Location name Extracted from Reuters Articles'
  99.  
  100. transform=ax.transAxes, size=12, weight=600, color='#777777'
  101.  
  102. ax.xaxis.set_ticks_position('bottom'
  103.  
  104. ax.tick_params(axis='y', colors='black', labelsize=12
  105.  
  106. ax.set_axisbelow(True) 
  107.  
  108. ax.text(01.08'TOP 10 Location Mention in Reuters Articles'
  109.  
  110. transform=ax.transAxes, size=22, weight=600, ha='left'
  111.  
  112. ax.text(0, -0.1'Source: http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html'
  113.  
  114. transform=ax.transAxes, size=12, weight=600, color='#777777'
  115.  
  116. ax.spines['right'].set_visible(False) 
  117.  
  118. ax.spines['top'].set_visible(False) 
  119.  
  120. ax.spines['left'].set_visible(False) 
  121.  
  122. ax.spines['bottom'].set_visible(False) 
  123.  
  124. plt.tick_params(axis='y',which='both', left=False, top=False, labelbottom=False) 
  125.  
  126. ax.set_xticks([]) 
  127.  
  128. plt.show() 

从这个图表中,你可以说大多数文章都包含来自美国、日本、加拿大、伦敦和中国的新闻。

对美国的高度评价代表了路透在美业务的重点。

person变量表示1987年谁是名人。这些信息有助于我们了解这些人。

organization变量包含世界上提到最多的组织。

(4)文本数据中的唯一词

我们将在使用TF-IDF的文章中找到唯一的词汇。词频(TF)是每篇文章的字数。反向文档频率(IDF)同时考虑所有提到的文章并衡量词的重要性,。

TF-IDF得分较高的词在一篇文章中的数量较高,而在其他文章中很少出现或不存在。

让我们计算TF-IDF分数并找出唯一的单词。

  1. from sklearn.feature_extraction.text import TfidfVectorizer 
  2.  
  3. tfidf_vectorizer = TfidfVectorizer(use_idf=True) 
  4.  
  5. tfidf_vectorizer_vectors=tfidf_vectorizer.fit_transform(articles_word_limit[‘text_clean’]) 
  6.  
  7. tfidf = tfidf_vectorizer_vectors.todense() 
  8.  
  9. tfidf[tfidf == 0] = np.nan 
  10.  
  11. # 使用numpy的nanmean,在计算均值时忽略nan 
  12.  
  13. means = np.nanmean(tfidf, axis=0
  14.  
  15. # 将其转换为一个字典,以便以后查找 
  16.  
  17. Means_words = dict(zip(tfidf_vectorizer.get_feature_names(), 
  18.  
  19. means.tolist()[0])) 
  20.  
  21. unique_words=sorted(means_words.items(), 
  22.  
  23. key=lambda x: x[1], 
  24.  
  25. reverse=True) 
  26.  
  27. print(unique_words) 

(5)用K-均值聚类文章

K-Means是一种无监督的机器学习算法。它有助于我们在一组中收集同一类型的文章。我们可以通过初始化k值来确定组或簇的数目。了解更多关于K-Means以及如何在这里选择K值。作为参考,我选择k=4。

  1. from sklearn.feature_extraction.text import TfidfVectorizer 
  2.  
  3. from sklearn.cluster import KMeans 
  4.  
  5. from sklearn.metrics import adjusted_rand_score 
  6.  
  7. vectorizer = TfidfVectorizer(stop_words=’english’,use_idf=True) 
  8.  
  9. X = vectorizer.fit_transform(articles_word_limit[‘text_clean’]) 
  10.  
  11. k = 4 
  12.  
  13. model = KMeans(n_clusters=k, init=’k-means++’, 
  14.  
  15. max_iter=100, n_init=1
  16.  
  17. model.fit(X) 
  18.  
  19. order_centroids = model.cluster_centers_.argsort()[:, ::-1
  20.  
  21. terms = vectorizer.get_feature_names() 
  22.  
  23. clusters = model.labels_.tolist() 
  24.  
  25. articles_word_limit.index = clusters 
  26.  
  27. for i in range(k): 
  28.  
  29. print(“Cluster %d words:” % i, end=’’) 
  30.  
  31. for title in articles_word_limit.ix[i 
  32.  
  33. [[‘text_clean’,’index’]].values.tolist(): 
  34.  
  35. print(‘ %s,’ % title, end=’’) 

它有助于我们将文章按不同的组进行分类,如体育、货币、金融等。K-Means的准确性普遍较低。

结论

NER和K-Means是我最喜欢的分析方法。其他人可能喜欢N-gram和Unique words方法。在本文中,我介绍了最着名和闻所未闻的文本可视化和分析方法。本文中的所有这些方法都是独一无二的,可以帮助你进行可视化和分析。

我希望这篇文章能帮助你发现文本数据中的未知数。

 

责任编辑:张燕妮 来源: Towards Datas Science
相关推荐

2013-07-31 10:45:30

2012-08-16 11:30:24

2017-01-12 17:28:59

数据分析数据可视化可视化

2017-04-18 11:01:14

数据分析数据可视化

2012-05-01 17:12:39

iPad

2020-08-17 14:37:02

阿里巴巴技术封禁

2015-01-08 21:57:33

蜜乐APP

2022-05-30 12:14:18

黑客网络攻击

2018-12-03 16:50:23

数据可视化数据分析薪水

2017-03-09 09:54:13

分析数据可视化

2013-07-03 11:15:16

2020-05-14 10:19:23

Python可视化分析

2017-09-15 10:23:06

可视化Bug数据分析

2018-01-29 21:50:20

自动驾驶人工智能无人车

2023-11-24 14:02:00

Python数据分析

2019-09-02 15:40:25

可视化数据分析

2017-02-21 17:01:32

JavaScript数据分析可视化

2017-02-07 15:54:14

数据可视化数据分析

2013-05-14 16:23:41

2020-12-07 05:51:49

数据分析数据可视化数据科学
点赞
收藏

51CTO技术栈公众号