社区编辑申请
注册/登录
分布式ID生成之雪花算法
开发 前端 分布式 算法
分布式唯一ID的方案有很多,本文主要讨论了雪花算法,组成结构大致分为了无效位、时间位、机器位和序列号位。

唯一ID可以标识数据的唯一性,在分布式系统中生成唯一ID的方案有很多,常见的方式大概有以下三种:

  • 依赖数据库,使用如MySQL自增列或Oracle序列等。
  • UUID随机数
  • snowflake雪花算法(本文将要讨论)

一、数据库和UUID方案的不足之处

采用数据库自增序列:

  • 读写分离时,只有主节点可以进行写操作,可能有单点故障的风险
  • 分表分库,数据迁移合并等比较麻烦

UUID随机数:

  • 采用无意义字符串,没有排序
  • UUID使用字符串形式存储,数据量大时查询效率比较低

二、关于雪花算法

有这么一种说法,自然界中并不存在两片完全一样的雪花的。每一片雪花都拥有自己漂亮独特的形状、独一无二。雪花算法也表示生成的ID如雪花般独一无二。

分布式ID生成--雪花算法

1. 雪花算法概述

雪花算法生成的ID是纯数字且具有时间顺序的。其原始版本是scala版,后面出现了许多其他语言的版本如Java、C++等。

2. 组成结构

分布式ID生成--雪花算法

大致由:首位无效符、时间戳差值,机器(进程)编码,序列号四部分组成。

3. 特点(自增、有序、适合分布式场景)

  • 时间位:可以根据时间进行排序,有助于提高查询速度。
  • 机器id位:适用于分布式环境下对多节点的各个节点进行标识,可以具体根据节点数和部署情况设计划分机器位10位长度,如划分5位表示进程位等。
  • 序列号位:是一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号

snowflake算法可以根据项目情况以及自身需要进行一定的修改。

分布式ID生成--雪花算法

三、雪花算法的缺点

雪花算法在单机系统上ID是递增的,但是在分布式系统多节点的情况下,所有节点的时钟并不能保证不完全同步,所以有可能会出现不是全局递增的情况。

四、总结

分布式唯一ID的方案有很多,本文主要讨论了雪花算法,组成结构大致分为了无效位、时间位、机器位和序列号位。其特点是自增、有序、纯数字组成查询效率高且不依赖于数据库。适合在分布式的场景中应用,可根据需求调整具体实现细节。

 

责任编辑:赵宁宁 来源: 今日头条
相关推荐

2022-02-23 07:09:30

分布式ID雪花算法

2022-01-27 10:06:29

2020-11-04 14:40:26

分布式Tinyid数据库

2016-11-29 09:12:21

2017-07-01 16:02:39

2020-07-31 10:15:32

分布式ID数据库MySQL

2020-11-04 14:20:58

分布式数据库MySQL

2022-06-14 18:35:01

2022-06-16 07:31:15

2021-11-08 19:25:37

2020-07-21 11:35:21

开发技能代码

2021-09-14 07:26:25

2021-07-07 07:14:48

2021-08-26 13:22:46

同话题下的热门内容

字节的前端监控 SDK 是怎样设计的TestOps完全手册:工作流、生命周期、团队和流程使用Python快速搭建接口自动化测试脚本实战总结你需要知道的TypeScript高级类型不要在 Python 中使用循环,这些方法其实更棒!哪种编程语言最适合开发网页抓取工具?从 Islands Architecture 看前端有多卷反应式JavaScript:前端架构的演变

编辑推荐

太厉害了,终于有人能把TCP/IP协议讲的明明白白了!牛人5次面试腾讯不成功的经验HBase原理–所有Region切分的细节都在这里了Javascript如何监听页面刷新和关闭事件如何搭建一个HTTPS服务端
我收藏的内容
点赞
收藏

51CTO技术栈公众号