社区编辑申请
注册/登录
从工业大数据本质看工业大数据下的决策方式
大数据 CIOAge
大数据的本质就是,“数据+算法=服务”,数据来自机器数据,业务数据,产品数据。这些数据需要通过物联网、传感器不断的获取。而算法部署在云端,一类是机理模型,另外一类是AI或者大数据模型。

我们要看大数据与工业的深度融合之前,先看看核心要素大数据的本质是什么。

大数据的本质就是,“数据+算法=服务”,数据来自机器数据,业务数据,产品数据。这些数据需要通过物联网、传感器不断的获取。而算法部署在云端,一类是机理模型,另外一类是AI或者大数据模型。

通过大数据和算法,带来了新的服务,服务包括四个层次:描述这个世界(发生了什么);诊断这个世界(为什么发生);预测这个世界(将会发生什么);进行决策(应该怎么做)。最终实现优化资源配置效率,提高生产力。这也是一种全新的认识和改造这个世界的方法论。

我们说大数据的下半场是跟产业的深度融合,那么大数据与工业融合之后的工业大数据,其本质又是什么?我认为工业大数据的本质是:数据+算法=服务。

从工业大数据本质看工业大数据下的决策方式

一个工业机理模型可以实现四类功能:一、描述,描述设备、工艺发生了什么;二、诊断,发生了什么问题、什么地方发生了问题;三、预测,如果不处理设备将有什么问题,能耗会有什么问题,质量会有什么问题;四、决策、***怎么办,是对那个环节进行维修,那个环节进行优化,或者保养,增加或者减少物料的输入等等,给操作手、给总工、给管理层提供一个解决方案。

机理模型的落地,就是我们认识客观世界的一个过程。一般说会有四个阶段:一、理论推理,把工业中的热平衡、物质平衡等通过抽象的方法形成理论模型;二、实验验证,对理论模型进行实验验证,仿真验证的过程;三、模拟择优,在虚拟世界里面去完成,通过大数据模拟选择***的结果;四、大数据分析通过模拟+大数据发现新的规律。

机理模型构建了业务场景的数字孪生,通过设备上云、物联网、互联网,实现了从局部数字孪生到跨节点的数字孪生,从静态的数字孪生到动态的数字孪生。我们在热平衡模型的应用中,对每日、每时、每秒的数据进行优化,指导在工艺环节的优化。构建一个机理模型、数字孪生,背后的原理就是大数据+算法=服务。他可以缩短研发周期,提高资源优化效率,提供新的分析方法,构建资源配置新模式。

依托于工业大数据的支持,工业企业的决策方式也将增加为更加科学规范的模式:数据+算法。数据+算法的决策机制,不是对已有决策机制的一种替代,而是增加。

“数据+算法”的决策机制原理有几个方面,对于不确定性的问题,我们首先要获得数据,理解这个世界,理解和认知规律;理解之后我们要预测发生什么,做边缘响应和远端响应;***我们要去控制,将决策付诸行动。

企业的核心问题是解决和提高资源配置效率。大数据如何支撑企业决策,就是将正确的数据,在正确的时间,以正确的方式传递给正确的人和机器。大规模个性化生产实现了从固定靶到空中飞碟的转变。这其中,通过模型可以提供将不确定性转化为确定性的***路径,通过大数据将数据转化为知识,将隐形数据显性化、将隐形知识显性化。

责任编辑:未丽燕 来源: iReadyIT
相关推荐

2022-02-09 21:53:13

2021-11-22 15:10:53

2020-11-23 11:09:28

大数据

2016-10-19 21:14:01

王建民工业大数据

2018-12-12 14:57:17

大数据制造工业互联网

2019-04-19 15:00:29

工业大数据数据分析企业

2019-04-09 13:10:44

2017-08-11 16:08:20

2019-10-30 10:38:48

大数据系统技术

2019-10-30 11:00:14

大数据工业4.0技术

2013-02-18 11:16:10

大数据

2022-03-28 14:55:41

大数据人工智能战争

2021-06-29 09:50:35

2021-02-04 10:55:04

大数据教育行业大数据应用

2016-09-28 14:39:26

大数据商业采集

2019-10-23 14:51:49

大数据存储技术

2016-09-13 09:10:35

大数据

2021-02-05 11:21:54

大数据大数据技术

2017-07-19 11:04:40

大数据大数据应用方向

2019-03-15 15:51:14

大数据标准化大数据产业

同话题下的热门内容

大数据分析技术和方法有哪些?如何构建准实时数仓?大数据如何成为元宇宙的基石五个方法,破解数据分析的核心难题节日消费数据不“杀熟”?大数据带你一起“解”七夕!中原银行实时风控体系建设实践聊聊数据分析的价值是什么?用户分析,看这一篇就够了

编辑推荐

使用Pandas&NumPy进行数据清洗的6大常用方法2018年7款最佳免费数据分析工具pyspark访问hive数据实战【漫谈数据仓库】 如何优雅地设计数据分层人工智能、大数据与深度学习之间的关系和差异
我收藏的内容
点赞
收藏

AISummit人工智能大会