社区编辑申请
注册/登录
如何更有价值采集数据、高效分析数据?
大数据 数据分析
用户行为数据的意义和价值《为什么要进行用户行为分析?》,以及互联网产品用户模型的构建,这其中就包含了对数据的采集和分析两大块儿,本文将从数据采集的三大要点、如何让分析更有价值更高效、以及数据分析思维三部分展开聊。

上回说到,用户行为数据的意义和价值《为什么要进行用户行为分析?》,以及互联网产品用户模型的构建,这其中就包含了对数据的采集和分析两大块儿,本文将从数据采集的三大要点、如何让分析更有价值更高效、以及数据分析思维三部分展开聊。

一、数据采集的三大要点

1、全面性

数据量足够具有分析价值、数据面足够支撑分析需求。

比如对于“查看商品详情”这一行为,需要采集用户触发时的环境信息、会话、以及背后的用户id,***需要统计这一行为在某一时段触发的人数、次数、人均次数、活跃比等。

2、多维性

数据更重要的是能满足分析需求。灵活、快速自定义数据的多种属性和不同类型,从而满足不同的分析目标。

比如“查看商品详情”这一行为,通过埋点,我们才能知道用户查看的商品是什么、价格、类型、商品id等多个属性。从而知道用户看过哪些商品、什么类型的商品被查看的多、某一个商品被查看了多少次。而不仅仅是知道用户进入了商品详情页。

3、高效性

高效性包含技术执行的高效性、团队内部成员协同的高效性以及数据分析需求和目标实现的高效性。

基于以上三点,我们看如何让数据采集更准确、分析更有用以及团队内部更高效。

二、数据分析价值性和高效性

step1:明确数据驱动目标

数据采集切忌大而全,数据分析需求也是随着产品不断迭代的,明确长远和当前阶段的分析需求,让分析更有目的性,技术执行更高效。

场景举例:

小葛是公司的产品经理,小诸是技术,最近两人都认识到了数据在产品运营和决策中的重要性,经过几个数据平台的调研,***,选择了诸葛io,并且已经明确了当前阶段的数据需求...

小葛:“小诸忙吗,文档中那个,登录流程、注册转化、购买转化、分享转化等是长远需要关注的数据指标,务必埋上哦;对于发现功能呢,两个礼拜后我们会提交一个新版本,先不埋了啦,辛苦啦。”

小诸:“小葛,你真棒,一会儿我就给你埋好了呢!”

小葛:“哦还有,注册那个页面我们有个推荐人选项,需要用户输入推荐人账号,采集的时候别采账号啊,我只想看注册用户是否有推荐人的分布,把那个属性处理成判断哦”

小诸:“这简单。那今晚...”

看着小葛转身要离开了,小诸欲言又止,默默地继续敲代码了...

step2:按需采集数据

带着需求和分析目标去采数据,不仅避免了数据冗余带来的无从下手,也避免了全量采集之后却不知道要分析什么的尴尬。

图示为埋点范例:

 

图示文档可由数据分析需求人员整理,表格梳理让需求人员和技术人员协同更高效,也大大提升了后续的分析价值和效率

step3:多维交叉定位问题

对数据的应用可分为一般分析和探索性分析。一般分析包括对日常数据如新增、活跃、留存、核心漏斗的监测分析,也包括对各部门日常业务的数据监测。监测每日增长,分析异常情况,比如对注册失败、支付失败事件的监控和及时优化。

探索性分析是对数据的高级应用。对核心事件的相关性分析、挖掘产品改进关键点等,如促进用户购买的相关性分析、找到促进留存的Ahamoment等。

step4:优化产品、优化运营策略

基于数据反映的问题,做到实时监控和及时解决,基于分析得到的增长启发,去做A/B测试、灰度测试、去MVP实践。

step5:衡量

衡量是数据分析到实践的***一步,当然,也可能是***步。有时候我们看似找到了增长点,但实验发现,事实并不如预期,不要灰心,不要丧气,更不要不吃饭,分析过程中对用户的理解、对业务的深度挖掘可能会让下一次优化产生累计价值。

三、数据分析思维

数据采集固然重要,数据分析的方法论也很重要,但不要迷信数据,因为更重要的,可能是人的创造力和想象力!数据分析也从来不是一劳永逸的,产品在不断迭代,业务在不断更新,从认知到决策,数据更多的是起到了辅助的作用,从梳理需求、到采集、到分析、到实践、再到衡量,它是始终循环在企业增长的整个过程中的。

***,那些改变世界的程序猿,他们始终希望能用自己的技术创造更多的价值,很多时候,他们要的可能是明确的数据需求、明确的分析目标,以及一套高效协同的方法,毕竟,谁都认为:能准确解决问题、能驱动业务增长,更!重!要!

责任编辑:武晓燕 来源: 数据猿
相关推荐

2016-11-17 11:11:09

数据采集数据分析

2022-07-14 10:00:21

数据价值

2022-08-02 11:29:17

2022-04-27 18:25:02

2016-12-28 19:50:33

大数据数据采集大数据平台

2017-03-06 08:37:52

数据可视化设计

2020-04-08 16:14:50

Python数据可视化

2016-11-08 09:16:54

数据仓库优化

2013-02-28 09:59:55

2021-10-29 13:42:44

2020-09-01 17:19:36

数据监控建模

2022-05-16 20:18:41

商品数据监控

2021-03-10 11:44:12

2019-12-23 14:24:14

数据挖掘数据分析网络分析

2019-10-14 15:57:36

数据分析多维度二八法

2010-04-30 16:19:08

Oracle数据库

2015-08-19 13:50:19

2010-05-07 15:48:38

Oracle数据库

2015-11-11 09:19:47

金融数据分析商业

2016-12-16 13:24:24

数据商业价值

同话题下的热门内容

数据专家的晋级之路:大数据中的四大挑战!节日消费数据不“杀熟”?大数据带你一起“解”七夕!五个方法,破解数据分析的核心难题2022年网购如何对抗大数据杀熟,更换商品名词有惊喜

编辑推荐

什么是数据分析的漏斗模型?数据分析师还吃香吗?用数据告诉你对比解读五种主流大数据架构的数据分析能力《狄仁杰之四大天王》影评分析(爬虫+词云+热力图)22个免费的数据可视化和分析工具推荐
我收藏的内容
点赞
收藏

51CTO技术栈公众号