30分钟泛型教程

开发 后端
泛型是程序设计语言的一种特性。允许程序员在强类型程序设计语言中编写代码时定义一些可变部分,那些部分在使用前必须作出指明。下面,各位网友们认真看看30分钟,完全掌握泛型的用法。

我们先来看一个最为常见的泛型类型List<T>的定义

(真正的定义比这个要复杂的多,我这里删掉了很多东西)

  1. [Serializable]  
  2. public class List<T> : IList<T>, ICollection<T>, IEnumerable<T>  
  3. {  
  4.     public T this[int index] { get; set; }  
  5.     public void Add(T item);  
  6.     public void Clear();  
  7.     public bool Contains(T item);  
  8.     public int IndexOf(T item);  
  9.     public bool Remove(T item);  
  10.     public void Sort();  
  11.     public T[] ToArray();  

List后面紧跟着一个<T>表示它操作的是一个未指定的数据类型(T代表着一个未指定的数据类型)

可以把T看作一个变量名,T代表着一个类型,在List<T>的源代码中任何地方都能使用T。

T被用作方法的参数和返回值。

Add方法接收T类型的参数,ToArray方法返回一个T类型的数组

注意:

泛型参数必须以T开头,要么就叫T,要么就叫TKey或者TValue;

这跟接口要以I开头是一样的,这是约定。

下面来看一段使用泛型类型的代码

  1. var a = new List<int>();  
  2.             a.Add(1);  
  3.             a.Add(2);  
  4.             //这是错误的,因为你已经指定了泛型类型为int,就不能在这个容器中放入其他的值  
  5.             //这是编译器错误,更提升了排错效率,如果是运行期错误,不知道要多么烦人  
  6.             a.Add("3");  
  7.             var item = a[2]; 

请注意上面代码里的注释

二、泛型的作用(1):

作为程序员,写代码时刻不忘代码重用。

代码重用可以分成很多类,其中算法重用就是非常重要的一类,假设你要为一组整型数据写一个排序算法,又要为一组浮点型数据写一个排序算法,如果没有泛型类型,你会怎么做呢?

你可能想到了方法的重载。

写两个同名方法,一个方法接收整型数组,另一个方法接收浮点型的数组。

但有了泛型,你就完全不必这么做,只要设计一个方法就够用了,你甚至可以用这个方法为一组字符串数据排序。

三、泛型的作用(2):

假设你是一个方法的设计者,这个方法需要有一个输入参数,但你并能确定这个输入参数的类型,那么你会怎么做呢?

有一部分人可能会马上反驳:“不可能有这种时候!”

那么我会跟你说,编程是一门经验型的工作,你的经验还不够,还没有碰到过类似的地方。

另一部分人可能考虑把这个参数的类型设置成Object的,这确实是一种可行的方案,但会造成下面两个问题,如果我给这个方法传递整形的数据(值类型的数据都一样),就会产生额外的装箱、拆箱操作,造成性能损耗。

如果你这个方法里的处理逻辑不适用于字符串的参数,而使用者又传了一个字符串进来,编译器是不会报错的,只有在运行期才会报错。

(如果质管部门没有测出这个运行期BUG,那么不知道要造成多大的损失呢)

这就是我们常说的:类型不安全。

四、泛型的示例:

像List<T>和Dictionary<TKey,TValue>之类的泛型类型我们经常用到,下面我介绍几个不常用到的泛型类型。

ObservableCollection<T>

当这个集合发生改变后会有相应的事件得到通知。

请看如下代码:

  1. static void Main(string[] args)  
  2. {  
  3.     var a = new ObservableCollection<int>();  
  4.     a.CollectionChanged += a_CollectionChanged;  
  5. }  
  6.  
  7. static void a_CollectionChanged(object sender, NotifyCollectionChangedEventArgs e)  
  8. {  
  9.     //可以通过Action来判断是什么操作触发了事件  
  10.     //e.Action == NotifyCollectionChangedAction.Add  
  11.  
  12.     //可以根据以下两个属性来得到更改前和更改后的内容  
  13.     //e.NewItems;  
  14.     //e.OldItems;  

使用这个集合需要引用如下两个名称空间

  1. using System.Collections.ObjectModel;  
  2. using System.Collections.Specialized; 

BlockingCollection<int>是线程安全的集合

来看看下面这段代码

  1. var bcollec = new BlockingCollection<int>(2);  
  2. //试图添加1-50  
  3. Task.Run(() =>  
  4. {  
  5.     //并行循环  
  6.     Parallel.For(1, 51, i =>  
  7.     {  
  8.         bcollec.Add(i);  
  9.         Console.WriteLine("加入:" + i);  
  10.     });  
  11. });  
  12.  
  13. Thread.Sleep(1000);  
  14. Console.WriteLine("调用一次Take");  
  15. bcollec.Take();  
  16.  
  17. //等待无限长时间  
  18. Thread.Sleep(Timeout.Infinite); 

输出结果为:

  1. 加入:1  
  2. 加入:37  
  3. 调用一次Take  
  4. 加入:13 

BlockingCollection<int>还可以设置CompleteAdding和IsCompleted属性来拒绝加入新元素。

.NET类库还提供了很多的泛型类型,在这里就不一一例举了。

#p#

五、泛型的继承:

在.net中一切都继承字Object,泛型也不例外,泛型类型可以继承自其他类型。

来看一下如下代码

  1. public class MyType  
  2. {  
  3.     public virtual string getOneStr()  
  4.     {  
  5.         return "base object Str";  
  6.     }  
  7. }  
  8. public class MyOtherType<T> : MyType  
  9. {  
  10.     public override string getOneStr()  
  11.     {  
  12.         return typeof(T).ToString();  
  13.     }  
  14. }  
  15. class Program  
  16. {  
  17.     static void Main(string[] args)  
  18.     {  
  19.         MyType target = new MyOtherType<int>();  
  20.         Console.WriteLine(target.getOneStr());  
  21.         Console.ReadKey();  
  22.     }  

泛型类型MyOtherType<T>成功的重写了非泛型类型MyType的方法。

如果我试图按如下方式从MyOtherType<T>类型派生子类型就会导致编译器错误。

  1. //编译期错误  
  2. public class MyThirdType : MyOtherType<T>  
  3. {  
  4. }  
  5.  

但是如果写成这种方式,就不会出错

  1. public class MyThirdType : MyOtherType<int>  
  2.     {  
  3.         public override string getOneStr()  
  4.         {  
  5.             return "MyThirdType";  
  6.         }  
  7.     } 

注意:

如果按照如上写法,会造成类型不统一的问题,

如果一个方法接收MyThirdType类型的参数,

那么不能将一个MyOtherType<int>的实例传递给这个方法,   

然而一个方法如果接收MyOtherType<int>类型的参数,

却可以把MyThirdType类型的实例传递给这个方法,

这是CLR内部实现机制造成的,

这看起来确实很怪异!

写成如下方式也不会出错:

  1. public class MyThirdType<T> : MyOtherType<T>  
  2.     {  
  3.         public override string getOneStr()  
  4.         {  
  5.             return typeof(T).ToString() + " from MyThirdType";  
  6.         }  
  7.     } 

此中诀窍,只可意会,不可言传。

六、泛型接口

.NET类库里有很多泛型的接口,比如:IEnumerator<T>、IList<T>等,这里不对这些接口做详细描述了,值说说为什么要有泛型接口。

其实泛型接口出现的原因和泛型出现的原因类似,拿IComparable这个接口来说,此接口只描述了一个方法:

  1. int CompareTo(object obj); 

大家看到,如果是值类型的参数,势必会导致装箱和拆箱操作。

同时,也不是强类型的,不能在编译期确定参数的类型,有了IComparable<T>就解决掉这个问题了:

  1. int CompareTo(T other); 

七、泛型委托

委托描述方法,泛型委托的由来和泛型接口类似。

定义一个泛型委托也比较简单:

  1. public delegate void MyAction<T>(T obj); 

这个委托描述一类方法,这类方法接收T类型的参数,没有返回值。

来看看使用这个委托的方法:

  1. public delegate void MyAction<T>(T obj);  
  2. static void Main(string[] args)  
  3. {  
  4.     var method = new MyAction<int>(printInt);  
  5.     method(3);  
  6.     Console.ReadKey();  
  7. }  
  8. static void printInt(int i)  
  9. {  
  10.     Console.WriteLine(i);  

由于定义委托比较繁琐,.NET类库在System名称空间,下定义了三种比较常用的泛型委托。

Predicate<T>委托:

  1. public delegate bool Predicate<T>(T obj); 

这个委托描述的方法为接收一个T类型的参数,返回一个BOOL类型的值,一般用于比较方法。

Action<T>委托

  1. public delegate void Action<T>(T obj); 
  1. public delegate void Action<T1, T2>(T1 arg1, T2 arg2); 

这个委托描述的方法,接收一个或多个T类型的参数(最多16个,我这里只写了两种类型的定义方式),没有返回值。

Func<T>委托

  1. public delegate TResult Func<TResult>(); 
  1. public delegate TResult Func<T, TResult>(T arg); 

这个委托描述的方法,接收零个或多个T类型的参数(最多16个,我这里只写了两种类型的定义方式),与Action委托不同的是,它有一个返回值,返回值的类型为TResult类型的。

关于委托的描述,您还可以看我这篇文章。

#p#

八、泛型方法

泛型类型中的T可以用在这个类型的任何地方,然而有些时候,我们不希望在使用类型的时候就指定T的类型,我们希望在使用这个类型的方法时,再指定T的类型。

来看看如下代码:

  1. public class MyClass  
  2.     {  
  3.         public TParam CompareTo<TParam>(TParam other)  
  4.         {  
  5.             Console.WriteLine(other.ToString());  
  6.             return other;  
  7.         }  
  8.     } 

上面的代码中MyClass并不是一个泛型类型,但这个类型中的CompareTo<TParam>()却是一个泛型方法,TParam可以用在这个方法中的任何地方。

使用泛型方法一般用如下代码就可以了:

  1. obj.CompareTo<int>(4);  
  2. obj.CompareTo<string>("ddd"); 

然而,你可以写的更简单一些,写成如下的方式:

  1. obj.CompareTo(2);  
  2. obj.CompareTo("123"); 

有人会问:“这不可能,没有指定CompareTo方法的TParam类型,肯定会编译出错的”

我告诉你:不会的,编译器可以帮你完成类型推断的工作。

注意:

如果你为一个方法指定了两个泛型参数,而且这两个参数的类型都是T,那么如果你想使用类型推断,你必须传递两个相同类型的参数给这个方法,不能一个参数用string类型,另一个用object类型,这会导致编译错误。

九、泛型约束

我们设计了一个泛型类型,很多时候,我们不希望使用者传入任意类型的参数,也就是说,我们希望“约束”一下T的类型。

来看看如下代码:

  1. public class MyClass<T> where T : IComparable<T>  
  2.     {  
  3.         public int CompareTo(T other)  
  4.         {  
  5.             return 0;  
  6.         }  
  7.     } 

上面的代码要求T类型必须实现了IComparable<T>接口。

如你所见:泛型的约束通过关键字where来实现。

泛型方法当然也可以通过类似的方式对泛型参数进行约束。

请看如下代码:

  1. public class MyClass  
  2. {  
  3.     public TParam CompareTo<TParam>(TParam other) where TParam:class 
  4.     {  
  5.         Console.WriteLine(other.ToString());  
  6.         return other;  
  7.     }  

上面代码中用了class关键字约束泛型参数TParam;具体稍后解释。

注意1:

如果我有一个类型也定义为MyClass<T>但没有做约束,那么这个时候,做过约束的MyClass<T>将与没做约束的MyClass<T>冲突,编译无法通过。

注意2:

当你重写一个泛型方法时,如果这个方法指定了约束,在重写这个方法时,不能再指定约束了。

注意3:

虽然我上面的例子写的是接口约束,但你完全可以写一个类型,比如说BaseClass。而且,只要是继承自BaseClass的类型都可以当作T类型使用,你不要试图约束T为Object类型,编译不会通过的。(傻子才这么干)

注意4:

有两个特殊的约束:class和struct。

where T : class 约束T类型必须为引用类型

where T : struct 约束T类型必须为值类型

注意5:

如果你没有对T进行class约束,

那么你不能写这样的代码:T obj = null; 这无法通过编译,因为T有可能是值类型的。

如果你没有对T进行struct约束,也没有对T进行new约束。

那么你不能写这样的代码:T obj = new T(); 这无法通过编译,因为值类型肯定有无参数构造器,而引用类型就不一定了。

如果你对T进行了new约束:where T : new(); 那么new T()就是正确的,因为new约束要求T类型有一个公共无参构造器。

注意6:

就算没有对T进行任何约束,也有一个办法来处理值类型和引用类型的问题。

T temp = default(T);

如果T为引用类型,那么temp就是null;如果T为值类型,那么temp就是0;

注意7:

试图对T类型的变量进行强制转化,一般情况下会报编译期错误。

但你可以先把T转化成object再把object转化成你要的类型(一般不推荐这么做,你应该考虑把T转化成一个约束兼容的类型)。

你也可以考虑用as操作符进行类型转化,这一般不会报错,但只能转化成引用类型。

关于泛型约束的内容,我在这篇文章里也有提到。

十、逆变和协变

一般情况下,我们使用泛型时,由T标记的泛型类型是不能更改的。

也就是说,如下两种写法都是错误的:

  1. var a = new List<object>();  
  2. List<string> b = a;  
  3. var c = new List<string>();  
  4. List<object> d = c; 

注意:这里没有写强制转换,即使写了强制转换也是错误的,编译就无法通过,然而泛型提供了逆变和协变的特性,有了这两种特性,这种转换就成为了可能。

逆变:

泛型类型T可以从基类型更改为该类的派生类型,用in关键字标记逆变形式的类型参数,而且这个参数一般作输入参数。

协变:

泛型类型T可以从派生类型更改为它的基类型,用out关键字来标记协变形式的类型参数,而且这个参数一般作为返回值。

如果我们定义了一个这样的委托:

  1. public delegate TResult MyAction<in T,out TResult>(T obj); 

那么,就可以让如下代码通过编译(不用强制转换)

  1. var a = new MyAction<object, ArgumentException>(o => new ArgumentException(o.ToString()));  
  2. MyAction<string, Exception> b = a; 

这就是逆变和协变的威力。

原文链接:http://www.cnblogs.com/liulun/archive/2013/05/02/3033599.html

责任编辑:林师授 来源: 博客园
相关推荐

2021-07-01 06:47:30

Java泛型泛型擦除

2017-01-10 09:07:53

tcpdumpGET请求

2020-09-29 06:37:30

Java泛型

2020-05-22 10:20:27

Shiro架构字符串

2017-07-18 11:10:45

2017-06-07 18:40:33

PromiseJavascript前端

2013-12-11 10:00:14

C++新特性C

2014-04-22 09:42:12

Bash脚本教程

2016-08-03 16:01:47

GitLinux开源

2016-04-06 11:14:48

iOS相机自定义

2022-09-30 15:46:26

Babel编译器插件

2019-12-12 10:25:33

Java泛型编程语言

2011-07-11 09:58:52

2018-02-02 10:24:37

Nginx入门指南

2018-04-24 14:52:48

LinuxBash脚本

2021-10-28 05:34:46

云计算云游戏Stadia

2022-03-31 06:27:59

网络故障网络管理平台网络中断

2021-09-13 18:07:33

网络攻击恶意软件网络安全

2012-06-28 10:26:51

Silverlight

2015-11-09 10:02:08

点赞
收藏

51CTO技术栈公众号