iOS并发编程指南

移动开发 iOS
超级详细的指南,放弃线程,高效并发,实现完美体验吧!全文分四个部分:1: Operation Queues;2: Dispatch Queues;3: Dispatch Sources;4: Migrating Away from Threads

iOS Concurrency Programming Guide

iOS 和 Mac OS 传统的并发编程模型是线程,不过线程模型伸缩性不强,而且编写正确的线程代码也不容易。Mac OS 和 iOS 采取 asynchronous design approach 来解决并发的问题。

引入的异步技术有两个:

Grand Central Dispatch:系统管理线程,你不需要编写线程代码。只需定义想要执行的任务,然后添加到适当的dispatch queue。Grand Central Dispatch会负责创建线程和调度你的任务。系统直接提供线程管理,比应用实现更加高效。

Operation Queue:Objective-C对象,类似于dispatch queue。你定义想要执行的任务,并添加任务到operation queue,后者负责调度和执行这些任务。和Grand Central Dispatch一样,Operation Queue也管理了线程,更加高效。

Dispatch Queue

基于C的执行自定义任务机制。dispatch queue按先进先出的顺序,串行或并发地执行任务。serial dispaptch queue一次只能执行一个任务,直接当前任务完成才开始出列并启动下一个任务。而concurrent dispatch queue则尽可能多地启动任务并发执行。

优点:

直观而简单的编程接口

提供自动和整体的线程池管理

提供汇编级调优的速度

更加高效地使用内存

不会trap内核under load

异步分派任务到dispatch queue不会导致queue死锁

伸缩性强

serial dispatch queue比锁和其它同步原语更加高效

Dispatch Sources

Dispatch Sources 是基于C的系统事件异步处理机制。一个Dispatch Source封装了一个特定类型的系统事件,当事件发生时提交一个特定的block对象或函数到dispatch queue。你可以使用Dispatch Sources监控以下类型的系统事件:

定时器

信号处理器

描述符相关的事件

进程相关的事件

Mach port事件

你触发的自定义事件

Operation Queues

Operation Queues是Cocoa版本的并发dispatch queue,由 NSOperationQueue 类实现。dispatch queue总是按先进先出的顺序执行任务,而 Operation Queues 在确定任务执行顺序时,还会考虑其它因素。最主要的一个因素是指定任务是否依赖于另一个任务的完成。你在定义任务时配置依赖性,从而创建复杂的任务执行顺序图

提交到Operation Queues的任务必须是 NSOperation 对象,operation object封装了你要执行的工作,以及所需的所有数据。由于 NSOperation 是一个抽象基类,通常你需要定义自定义子类来执行任务。不过Foundation framework自带了一些具体子类,你可以创建并执行相关的任务。

Operation objects会产生key-value observing(KVO)通知,对于监控任务的进程非常有用。虽然operation queue总是并发地执行任务,你可以使用依赖,在需要时确保顺序执行

异步设计技术

通过确保主线程自由响应用户事件,并发可以很好地提高应用的响应性。通过将工作分配到多核,还能提高应用处理的性能。但是并发也带来一定的额外开销,并且使代码更加复杂,更难编写和调试代码。

因此在应用设计阶段,就应该考虑并发,设计应用需要执行的任务,及任务所需的数据结构。

Operation Queues

基于Objective-C,因此基于Cocoa的应用通常会使用Operation Queues

Operation Objects

operation object 是 NSOperation 类的实例,封装了应用需要执行的任务,和执行任务所需的数据。NSOperation 本身是抽象基类,我们必须实现子类。Foundation framework提供了两个具体子类,你可以直接使用:

 

描述
NSInvocationOperation 可以直接使用的类,基于应用的一个对象和selector来创建operation object。如果你已经有现有的方法来执行需要的任务,就可以使用这个类。
NSBlockOperation 可以直接使用的类,用来并发地执行一个或多个block对象。operation object使用“组”的语义来执行多个block对象,所有相关的block都执行完成之后,operation object才算完成。
NSOperation 基类,用来自定义子类operation object。继承NSOperation可以完全控制operation object的实现,包括修改操作执行和状态报告的方式。

所有operation objects都支持以下关键特性:

支持建立基于图的operation objects依赖。可以阻止某个operation运行,直到它依赖的所有operation都已经完成。

支持可选的completion block,在operation的主任务完成后调用。

支持应用使用KVO通知来监控operation的执行状态。

支持operation优先级,从而影响相对的执行顺序

支持取消,允许你中止正在执行的任务

并发 VS 非并发Operations

通常我们通过将operation添加到operation queue中来执行该操作。但是我们也可以手动调用start方法来执行一个operation对象,这样做不保证operation会并发执行。NSOperation类对象的 isConcurrent 方法告诉你这个operation相对于调用start方法的线程,是同步还是异步执行的。isConcurrent 方法默认返回NO,表示operation与调用线程同步执行。

如果你需要实现并发operation,也就是相对调用线程异步执行的操作。你必须添加额外的代码,来异步地启动操作。例如生成一个线程、调用异步系统函数,以确保start方法启动任务,并立即返回。

多数开发者从来都不需要实现并发operation对象,我们只需要将operations添加到operation queue。当你提交非并发operation到operation queue时,queue会创建线程来运行你的操作,因此也能达到异步执行的目的。只有你不希望使用operation queue来执行operation时,才需要定义并发operations。

创建一个 NSInvocationOperation 对象

如果已经现有一个方法,需要并发地执行,就可以直接创建 NSInvocationOperation 对象,而不需要自己继承 NSOperation。

  1. @implementation MyCustomClass 
  2. - (NSOperation*)taskWithData:(id)data { 
  3. NSInvocationOperation* theOp = [[[NSInvocationOperation alloc] initWithTarget:self 
  4. selector:@selector(myTaskMethod:) object:data] autorelease]; 
  5.  
  6. return theOp; 
  7.  
  8. // This is the method that does the actual work of the task. 
  9. - (void)myTaskMethod:(id)data { 
  10. // Perform the task. 
  11. @end 

创建一个 NSBlockOperation 对象

NSBlockOperation 对象用于封装一个或多个block对象,一般创建时会添加至少一个block,然后再根据需要添加更多的block。当 NSBlockOperation 对象执行时,会把所有block提交到默认优先级的并发dispatch queue。然后 NSBlockOperation 对象等待所有block完成执行,***标记自己已完成。因此可以使用block operation来跟踪一组执行中的block,有点类似于thread join等待多个线程的结果。区别在于block operation本身也运行在一个单独的线程,应用的其它线程在等待block operation完成时可以继续工作。

  1. NSBlockOperation* theOp = [NSBlockOperation blockOperationWithBlock: ^{ 
  2. NSLog(@"Beginning operation.\n"); 
  3. // Do some work. 
  4. }]; 

使用 addExecutionBlock: 可以添加更多block到这个block operation对象。如果需要顺序地执行block,你必须直接提交到所需的dispatch queue。

自定义Operation对象

如果block operation和invocation operation对象不符合应用的需求,你可以直接继承 NSOperation,并添加任何你想要的行为。NSOperation 类提供通用的子类继承点,而且实现了许多重要的基础设施来处理依赖和KVO通知。继承所需的工作量主要取决于你要实现非并发还是并发的operation。

定义非并发operation要简单许多,只需要执行主任务,并正确地响应取消事件;NSOperation 处理了其它所有事情。对于并发operation,你必须替换某些现有的基础设施代码。

执行主任务

每个operation对象至少需要实现以下方法:

自定义initialization方法:初始化,将operation 对象设置为已知状态

自定义main方法:执行你的任务

你也可以选择性地实现以下方法:

main方法中需要调用的其它自定义方法

Accessor方法:设置和访问operation对象的数据

dealloc方法:清理operation对象分配的所有内存

NSCoding 协议的方法:允许operation对象archive和unarchive

  1. @interface MyNonConcurrentOperation : NSOperation { 
  2. id myData; 
  3. -(id)initWithData:(id)data; 
  4. @end 
  5.  
  6. @implementation MyNonConcurrentOperation 
  7. - (id)initWithData:(id)data { 
  8. if (self = [super init]) 
  9. myData = [data retain]; 
  10. return self; 
  11.  
  12. - (void)dealloc { 
  13. [myData release]; 
  14. [super dealloc]; 
  15.  
  16. -(void)main { 
  17. @try { 
  18. NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init]; 
  19. // Do some work on myData and report the results. 
  20. [pool release]; 
  21. @catch(...) { 
  22. // Do not rethrow exceptions. 
  23. @end 

响应取消事件

operation开始执行之后,会一直执行任务直到完成,或者显式地取消操作。取消可能在任何时候发生,甚至在operation执行之前。尽管 NSOperation 提供了一个方法,让应用取消一个操作,但是识别出取消事件则是你的事情。如果operation直接终止,可能无法回收所有已分配的内存或资源。因此operation对象需要检测取消事件,并优雅地退出执行。

operation 对象定期地调用 isCancelled 方法,如果返回YES(表示已取消),则立即退出执行。不管是自定义 NSOperation 子类,还是使用系统提供的两个具体子类,都需要支持取消。isCancelled方法本身非常轻量,可以频繁地调用而不产生大的性能损失。以下地方可能需要调用isCancelled:

在执行任何实际的工作之前

在循环的每次迭代过程中,如果每个迭代相对较长可能需要调用多次

代码中相对比较容易中止操作的任何地方

  1. - (void)main { 
  2. @try { 
  3. NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; 
  4. BOOL isDone = NO; 
  5.  
  6. while (![self isCancelled] && !isDone) { 
  7. // Do some work and set isDone to YES when finished 
  8. [pool release]; 
  9. @catch(...) { 
  10. // Do not rethrow exceptions. 

注意你的代码还需要完成所有相关的资源清理工作

为并发执行配置operations

Operation对象默认按同步方式执行,也就是在调用start方法的那个线程中直接执行。由于operation queue为非并发operation提供了线程支持,对应用来说,多数operations仍然是异步执行的。但是如果你希望手工执行operations,而且仍然希望能够异步执行操作,你就必须采取适当的措施,通过定义operation对象为并发操作来实现。

方法 描述
start (必须)所有并发操作都必须覆盖这个方法,以自定义的实现替换默认行为。手动执行一个操作时,你会调用start方法。因此你对这个方法的实现是操作的起点,设置一个线程或其它执行环境,来执行你的任务。你的实现在任何时候都绝对不能调用super。
main (可选)这个方法通常用来实现operation对象相关联的任务。尽管你可以在start方法中执行任务,使用main来实现任务可以让你的代码更加清晰地分离设置和任务代码
isExecuting
isFinished
(必须)并发操作负责设置自己的执行环境,并向外部client报告执行环境的状态。因此并发操作必须维护某些状态信息,以知道是否正在执行任务,是否已经完成任务。使用这两个方法报告自己的状态。
这两个方法的实现必须能够在其它多个线程中同时调用。另外这些方法报告的状态变化时,还需要为相应的key path产生适当的KVO通知。
isConcurrent (必须)标识一个操作是否并发operation,覆盖这个方法并返回YES

 

  1. @interface MyOperation : NSOperation { 
  2. BOOL        executing; 
  3. BOOL        finished; 
  4. - (void)completeOperation; 
  5. @end 
  6.  
  7. @implementation MyOperation 
  8. - (id)init { 
  9. self = [super init]; 
  10. if (self) { 
  11. executing = NO; 
  12. finished = NO; 
  13. return self; 
  14.  
  15. - (BOOL)isConcurrent { 
  16. return YES; 
  17.  
  18. - (BOOL)isExecuting { 
  19. return executing; 
  20.  
  21. - (BOOL)isFinished { 
  22. return finished; 
  23.  
  24. - (void)start { 
  25. // Always check for cancellation before launching the task. 
  26. if ([self isCancelled]) 
  27. // Must move the operation to the finished state if it is canceled. 
  28. [self willChangeValueForKey:@"isFinished"]; 
  29. finished = YES; 
  30. [self didChangeValueForKey:@"isFinished"]; 
  31. return
  32.  
  33. // If the operation is not canceled, begin executing the task. 
  34. [self willChangeValueForKey:@"isExecuting"]; 
  35. [NSThread detachNewThreadSelector:@selector(main) toTarget:self withObject:nil]; 
  36. executing = YES; 
  37. [self didChangeValueForKey:@"isExecuting"]; 
  38.  
  39. - (void)main { 
  40. @try { 
  41. NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init]; 
  42.  
  43. // Do the main work of the operation here. 
  44.  
  45. [self completeOperation]; 
  46. [pool release]; 
  47. @catch(...) { 
  48. // Do not rethrow exceptions. 
  49.  
  50. - (void)completeOperation { 
  51. [self willChangeValueForKey:@"isFinished"]; 
  52. [self willChangeValueForKey:@"isExecuting"]; 
  53.  
  54. executing = NO; 
  55. finished = YES; 
  56.  
  57. [self didChangeValueForKey:@"isExecuting"]; 
  58. [self didChangeValueForKey:@"isFinished"]; 
  59. @end 

即使操作被取消,你也应该通知KVO observers,你的操作已经完成。当某个operation对象依赖于另一个operation对象的完成时,它会监测后者的isFinished key path。只有所有依赖的对象都报告已经完成,***个operation对象才会开始运行。如果你的operation对象没有产生完成通知,就会阻止其它依赖于你的operation对象运行。

维护KVO依从

NSOperation类的key-value observing(KVO)依从于以下key paths:

isCancelled

isConcurrent

isExecuting

isFinished

isReady

dependencies

queuePriority

completionBlock

如果你覆盖start方法,或者对NSOperation对象的其它自定义运行(覆盖main除外),你必须确保自定义对象对这些key paths保留KVO依从。覆盖start方法时,需要关注isExecuting和isFinished两个key paths。

如果你希望实现依赖于其它东西(非operation对象),你可以覆盖isReady方法,并强制返回NO,直到你等待的依赖得到满足。如果你需要保留默认的依赖管理系统,确保你调用了[super isReady]。当你的operation对象的准备就绪状态发生改变时,生成一个isReady的key path的KVO通知。

除非你覆盖了 addDependency: 或 removeDependency: 方法,否则你不需要关注dependencies key path

虽然你也可以生成 NSOperation 的其它KVO通知,但通常你不需要这样做。如果需要取消一个操作,你可以直接调用现有的cancel方法。类似地,你也很少需要修改queue优先级信息。***,除非你的operation对象可以动态地改变并发状态,你也不需要提供isConcurrent key path的KVO通知。

自定义一个Operation对象的执行行为

对Operation对象的配置发生在创建对象之后,将其添加到queue之前。

配置operation之间的依赖关系

依赖关系可以顺序地执行相关的operation对象,依赖于其它操作,则必须等到该操作完成之后自己才能开始。你可以创建一对一的依赖关系,也可以创建多个对象之间的依赖图。

使用 NSOperation 的 addDependency: 方法在两个operation对象之间建立依赖关系。表示当前operation对象将依赖于参数指定的目标operation对象。依赖关系不局限于相同queue中的operations对象,Operation对象会管理自己的依赖,因此完全可以在不同的queue之间的Operation对象创建依赖关系。

唯一的限制是不能创建环形依赖,这是程序员的错误,所有受影响的operations都无法运行!

当一个operation对象依赖的所有其它对象都已经执行完成,该operation就变成准备执行状态(如果你自定义了isReady方法,则由你的方法确定是否准备好运行)。如果operation已经在一个queue中,queue就可以在任何时候执行这个operation。如果你需要手动执行该operation,就自己调用operation的start方法。

配置依赖必须在运行operation和添加operation到queue之前进行,之后添加的依赖关系可能不起作用。

依赖要求每个operation对象在状态发生变化时必须发出适当的KVO通知。如果你自定义了operation对象的行为,就必须在自定义代码中生成适当的KVO通知,以确保依赖能够正确地执行。

修改Operation的执行优先级

对于添加到queue的Operations,执行顺序首先由已入队列的operations是否准备好,然后再根据所有operations的相对优先级确定。是否准备好由对象的依赖关系确定,优先级等级则是operation对象本身的一个属性。默认所有operation都拥有“普通”优先级,不过你可以通过 setQueuePriority: 方法来提升或降低operation对象的优先级。

优先级只能应用于相同queue中的operations。如果应用有多个operation queue,每个queue的优先级等级是互相独立的。因此不同queue中的低优先级操作仍然可能比高优先级操作更早执行。

优先级不能替代依赖关系,优先级只是queue对已经准备好的operations确定执行顺序。先满足依赖关系,然后再根据优先级从所有准备好的操作中选择优先级***的那个执行。

修改底层线程的优先级

Mac OS X 10.6之后,我们可以配置operation底层线程的执行优先级,线程直接由内核管理,通常优先级高的线程会给予更多的执行机会。对于operation对象,你指定线程优先级为0.0到1.0之间的某个数值,0.0表示***优先级,1.0表示***优先级。默认线程优先级为0.5

要设置operation的线程优先级,你必须在将operation添加到queue之前,调用 setThreadPriority: 方法进行设置。当queue执行该operation时,默认的start方法会使用你指定的值来修改当前线程的优先级。不过新的线程优先级只在operation的main方法范围内有效。其它所有代码仍然(包括completion block)运行在默认线程优先级。

如果你创建了并发operation,并覆盖了start方法,你必须自己配置线程优先级。

设置一个completion block

在Mac OS X 10.6之后,operation可以在主任务完成之后执行一个completion block。你可以使用这个completion block来执行任何不属于主任务的工作。例如你可以使用这个block来通知相关的client,操作已经执行完成。而并发operation对象则可以使用这个block来产生最终的KVO通知。

调用 NSOperation 的 setCompletionBlock: 方法来设置一个completion block,你传递的block应该没有参数和返回值。

实现Operation对象的技巧

Operation对象的内存管理

operation对象需要良好的内存管理策略

创建你自己的Autorelease Pool

operation是Objective-C对象,你在实现任务的代码中应该创建一个autorelease pool,这样可以保护那些autorelease对象得到尽快地释放。虽然你的自定义代码执行时可能已经有了一个pool,但你不能依赖于这个行为,总是应该自己创建一个。

拥有自己的autorelease pool还能更加灵活地管理operation的内存。如果operation创建大量的临时对象,则可以考虑创建额外的pool,来清理不再使用的临时对象。在iOS*****别需要注意,应迟早地清理不再使用的临时对象,避免内存警告。

  1. - (void)main { 
  2. @try { 
  3. NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init]; 
  4.  
  5. // Do the main work of the operation here. 
  6.  
  7. [pool release]; 
  8. @catch(...) { 
  9. // Do not rethrow exceptions. 

避免Per-Thread存储

虽然多数operation都在线程中执行,但对于非并发operation,通常由operation queue提供线程,这时候queue拥有该线程,而你的应用不应该去动这个线程。特别是不要关联任何数据到不是你创建和拥有的线程。这些线程由queue管理,根据系统和应用的需求创建或销毁。因此使用Per-Thread storage在operations之间传递数据是不可靠的,而且很有可能会失败。

对于operation对象,你完全没有理由使用Per-Thread Storage,应该在创建对象的时候就给它需要的所有数据。所有输入和输出数据都应该存储在operation对象中,***再整合到你的应用,或者最终释放掉。

根据需要保留Operation对象的引用

由于operation对象异步执行,你不能创建完以后就完全不管。它们也是对象,需要你来分配和释放它们管理的任何资源,特别是如果你需要在operation对象完成后获取其中的数据。

由于queue总是尽***可能快速地调度和执行operation,在你添加operation到queue时,可能立即就开始运行,当你稍后向queue请求operation对象的状态时,有可能queue已经执行完了相应的operation并从queue中删除了这个对象。因此你总是应该自己拥有operation对象的引用。

处理错误和异常

operation本质上是应用中独立的实体,因此需要自己负责处理所有的错误和异常。NSOperation默认的start方法并没有捕获异常。所以你自己的代码总是应该捕获并抑制异常。你还应该检查错误代码并适当地通知应用。如果你覆盖了start方法,你也必须捕获所有异常,阻止它离开底层线程的范围。

你需要准备好处理以下错误或异常:

检查并处理UNIX errno风格的错误代码

检查方法或函数显式返回的错误代码

捕获你的代码或系统frameworks抛出的异常

捕获NSOperation类自己抛出的异常,在以下情况NSOperation会抛出异常:

operation没有准备好,但是调用了start方法

operation正在执行或已经完成(可能被取消),再次调用了start方法。

当你添加completion block到正在执行或已经完成的operation

当你试图获取已经取消 NSInvocationOperation 对象的结果

为Operation对象确定一个适当的范围

和任何对象一样,NSOperation对象也会消耗内存,执行时也会带来开销。因此如果operation对象只做很少的工作,但是却创建成千上万个小的operation对象,你就会发现更多的时间花在了调度operations而不是执行它们。

要高效地使用Operations,关键是在Operation执行的工作量和保持计算机繁忙之间,找到***的平衡。确保每个Operation都有一定的工作量可以执行。例如100个operations执行100次相同任务,可以考虑换成10个operations,每个执行10次。

你同样要避免向一个queue中添加过多的operations,或者持续快速地向queue中添加operation,超过queue所能处理的能力。这里可以考虑分批创建operations对象,在一批对象执行完之后,使用completion block告诉应用创建下一批operations对象。

执行Operations

应用需要执行Operations来处理相关的工作,你有几种方法来执行Operations对象。

添加Operations到Operation Queue

执行Operations最简单的方法是添加到operation queue,后者是 NSOperationQueue 对象。应用负责创建和维护自己使用的所有 NSOperationQueue 对象。

  1. NSOperationQueue* aQueue = [[NSOperationQueue alloc] init]; 

调用 addOperation: 方法添加一个operation到queue,Mac OS X 10.6之后可以使用 addOperations:waitUntilFinished: 方法一次添加一组operations,或者也可以直接使用 addOperationWithBlock: 方法添加 block 对象到queue。

  1. [aQueue addOperation:anOp]; // Add a single operation 
  2. [aQueue addOperations:anArrayOfOps waitUntilFinished:NO]; // Add multiple operations 
  3. [aQueue addOperationWithBlock:^{ 
  4. /* Do something. */ 
  5. }]; 

Operations添加到queue后,通常短时间内就会得到运行。但是如果存在依赖,或者Operations挂起等原因,也可能需要等待。

注意Operations添加到queue之后,绝对不要再修改Operations对象。因为Operations对象可能会在任何时候运行,因此改变依赖或数据会产生不利的影响。你只能通过 NSOperation 的方法来查看操作的状态,是否正在运行、等待运行、已经完成等。

虽然 NSOperationQueue 类设计用于并发执行Operations,你也可以强制单个queue一次只能执行一个Operation。setMaxConcurrentOperationCount: 方法可以配置operation queue的***并发操作数量。设为1就表示queue每次只能执行一个操作。不过operation执行的顺序仍然依赖于其它因素,像操作是否准备好和优先级等。因此串行化的operation queue并不等同于Grand Central Dispatch中的串行dispatch queue。

手动执行Operations

手动执行Operation,要求Operation已经准备好,isReady返回YES,此时你才能调用start方法来执行它。isReady方法与Operations依赖是结合在一起的。

调用start而不是main来手动执行Operation,因为start在执行你的自定义代码之前,会首先执行一些安全检查。而且start还会产生KVO通知,以正确地支持Operations的依赖机制。start还能处理Operations已经被取消的情况,此时会抛出一个异常。

手动执行Operation对象之前,还需要调用 isConcurrent 方法,如果返回NO,你的代码可以决定在当前线程同步执行这个Operation,或者创建一个独立的线程以异步执行。

下面方法演示了手动执行Operation,如果这个方法返回NO,表示不能执行,你需要设置一个定时器,稍后再次调用本方法,直到这个方法返回YES,表示已经执行Operation。

  1. - (BOOL)performOperation:(NSOperation*)anOp 
  2. BOOL        ranIt = NO; 
  3.  
  4. if ([anOp isReady] && ![anOp isCancelled]) 
  5. if (![anOp isConcurrent]) 
  6. [anOp start]; 
  7. else 
  8. [NSThread detachNewThreadSelector:@selector(start) 
  9. toTarget:anOp withObject:nil]; 
  10. ranIt = YES; 
  11. else if ([anOp isCancelled]) 
  12. // If it was canceled before it was started, 
  13. //  move the operation to the finished state. 
  14. [self willChangeValueForKey:@"isFinished"]; 
  15. [self willChangeValueForKey:@"isExecuting"]; 
  16. executing = NO; 
  17. finished = YES; 
  18. [self didChangeValueForKey:@"isExecuting"]; 
  19. [self didChangeValueForKey:@"isFinished"]; 
  20.  
  21. // Set ranIt to YES to prevent the operation from 
  22. // being passed to this method again in the future. 
  23. ranIt = YES; 
  24. return ranIt; 

取消Operations

一旦添加到operation queue,queue就拥有了这个对象并且不能被删除,唯一能做的事情是取消。你可以调用Operation对象的cancel方法取消单个操作,也可以调用operation queue的 cancelAllOperations 方法取消当前queue中的所有操作。

只有你确定不再需要Operations对象时,才应该取消它。发出取消命令会将Operations对象设置为"Canceled"状态,会阻止它被执行。由于取消也被认为是完成,依赖于它的其它Operations对象会收到适当的KVO通知,并清除依赖状态,然后得到执行。

因此常见的做法是当发生重大事件时,一次性取消queue中的所有操作,例如应用退出或用户请求取消操作。

等待Operations完成

为了***的性能,你应该尽量设计你的应用尽可能地异步操作,让应用在操作正在执行时可以去处理其它事情。

如果创建operation的代码需要处理operation完成后的结果,可以使用 NSOperation 的 waitUntilFinished 方法等待operation完成。通常我们应该避免编写这样的代码,阻塞当前线程可能是一种简便的解决方案,但是它引入了更多的串行代码,限制了整个应用的并发性,同时也降低了用户体验。

绝对不要在应用主线程中等待一个Operation,只能在第二或次要线程中等待。阻止主线程将导致应用无法响应用户事件,应用也将表现为无响应。

除了等待单个Operation完成,你也可以同时等待一个queue中的所有操作,使用 NSOperationQueue 的 waitUntilAllOperationsAreFinished 方法。注意在等待一个queue时,应用的其它线程仍然可以往queue中添加Operation,因此可能加长你线程的等待时间。

挂起和继续Queue

如果你想临时挂起Operations的执行,可以使用 setSuspended: 方法暂停相应的queue。不过挂起一个queue不会导致正在执行的Operation在任务中途暂停,只是简单地阻止调度新Operation执行。你可以在响应用户请求时,挂起一个queue,来暂停等待中的任务。稍后根据用户的请求,可以再次调用 setSuspended: 方法继续Queue中操作的执行。#p#

Dispatch Queues

dispatch queues是执行任务的强大工具,允许你同步或异步地执行任意代码block。原先使用单独线程执行的所有任务都可以替换为使用dispatch queues。而dispatch queues***的优点在于使用简单,而且更加高效。

dispatch queues任务的概念就是应用需要执行的一些工作,如计算、创建或修改数据结构、处理数据等等。我们使用函数或block对象来定义任务,并添加到dispatch queue。

dispatch queue是类似于对象的结构体,管理你提交给它的任务,而且都是先进先出的数据结构。因此queue中的任务总是以添加的顺序开始执行。Grand Central Disaptch提供了几种dispatch queues,不过你也自己创建。

类型 描述
串行 也称为private dispatch queue,每次只执行一个任务,按任务添加顺序执行。当前正在执行的任务在独立的线程中运行(不同任务的线程可能不同),dispatch queue管理了这些线程。通常串行queue主要用于对特定资源的同步访问。
你可以创建任意数量的串行queues,虽然每个queue本身每次只能执行一个任务,但是各个queue之间是并发执行的。
并发 也称为global dispatch queue,可以并发执行一个或多个任务,但是任务仍然是以添加到queue的顺序启动。每个任务运行于独立的线程中,dispatch queue管理所有线程。同时运行的任务数量随时都会变化,而且依赖于系统条件。
你不能创建并发dispatch queues。相反应用只能使用三个已经定义好的全局并发queues。
Main dispatch queue 全局可用的串行queue,在应用主线程中执行任务。这个queue与应用的 run loop 交叉执行。由于它运行在应用的主线程,main queue通常用于应用的关键同步点。
虽然你不需要创建main dispatch queue,但你必须确保应用适当地回收

应用使用dispatch queue,相比线程有很多优点,最直接的优点是简单,不用编写线程创建和管理的代码,让你集中精力编写实际工作的代码。另外系统管理线程更加高效,并且可以动态调控所有线程。

dispatch queue比线程具有更强的可预测性,例如两个线程访问共享资源,你可能无法控制哪个线程先后访问;但是把两个任务添加到串行queue,则可以确保两个任务对共享资源的访问顺序。同时基于queue的同步也比基于锁的线程同步机制更加高效。

应用有效地使用dispatch queue,要求尽可能地设计自包含、可以异步执行的任务。

dispatch queues的几个关键点:

dispatch queues相对其它dispatch queues并发地执行任务,串行化任务只能在同一个dispatch queue中实现。

系统决定了同时能够执行的任务数量,应用在100个不同的queues中启动100个任务,并不表示100个任务全部都在并发地执行(除非系统拥有100或更多个核)

系统在选择执行哪个任务时,会考虑queue的优先级。

queue中的任务必须在任何时候都准备好运行,注意这点和Operation对象不同。

private dispatch queue是引用计数的对象。你的代码中需要retain这些queue,另外dispatch source也可能添加到一个queue,从而增加retain的计数。因此你必须确保所有dispatch source都被取消,而且适当地调用release。

Queue相关的技术

除了dispatch queue,Grand Central Disaptch还提供几个相关的技术,使用queue来帮助你管理代码。

技术 描述
Dispatch group 用于监控一组block对象完成(你可以同步或异步地监控block)。Group提供了一个非常有用的同步机制,你的代码可以等待其它任务的完成
Dispatch semaphore 类似于传统的semaphore(信号量),但是更加高效。只有当调用线程由于信号量不可用,需要阻塞时,Dispatch semaphore才会去调用内核。如果信号量可用,就不会与内核进行交互。使用信号量可以实现对有限资源的访问控制
Dispatch source Dispatch source在特定类型的系统事件发生时,会产生通知。你可以使用dispatch source来监控各种事件,如:进程通知、信号、描述符事件、等等。当事件发生时,dispatch source异步地提交你的任务到指定的dispatch queue,来进行处理。
使用Block实现任务

Block可以非常容易地定义“自包含”的工作单元,尽管看上去非常类似于函数指针,block实际上由底层数据结构来表示,由编译器负责创建和管理。编译器对你的代码(和所有相关的数据)进行打包,封装为可以存在于堆中的格式,并在你的应用各个地方传递。

Block最关键的优点能够使用own lexical scope之外的变量,在函数或方法内部定义一个block时,block可以直接读取父scope中的变量。block访问的变量全部被拷贝到block在堆中的数据结构,这样block就能在稍后自由地访问这些变量。当block被添加到dispatch queue中时,这些变量通常是只读格式的。不过同步执行的Block对象,可以使用那些定义为__block的变量,对这些变量的修改会影响到调用scope。

Block的简单用法:

  1. int x = 123; 
  2. int y = 456; 
  3.   
  4. // Block declaration and assignment 
  5. void (^aBlock)(int) = ^(int z) { 
  6.     printf("%d %d %d\n", x, y, z); 
  7. }; 
  8.   
  9. // Execute the block 
  10. aBlock(789);   // prints: 123 456 789 

 

设计Block时需考虑以下关键指导方针:

对于使用dispatch queue的异步Block,可以在Block中安全地捕获和使用父函数或方法中的scalar变量。但是Block不应该去捕获大型结构体或其它基于指针的变量,这些变量由Block的调用上下文分配和删除。在你的Block被执行时,这些指针引用的内存可能已经不存在。当然,你自己显式地分配内存(或对象),然后让Block拥有这些内存的所有权,是安全可行的。

Dispatch queue对添加的Block会进行复制,在完成执行后自动释放。换句话说,你不需要在添加Block到Queue时显式地复制

尽管Queue执行小任务比原始线程更加高效,仍然存在创建Block和在Queue中执行的开销。如果Block做的事情太少,可能直接执行比dispatch到queue更加有效。使用性能工具来确认Block的工作是否太少

绝对不要针对底层线程缓存数据,然后期望在不同Block中能够访问这些数据。如果相同queue中的任务需要共享数据,应该使用dispatch queue的context指针来存储这些数据。

如果Block创建了大量Objective-C对象,考虑创建自己的autorelease pool,来处理这些对象的内存管理。虽然dispatch queue也有自己的autorelease pool,但不保证在什么时候会回收这些pool。

创建和管理Dispatch Queue

获得全局并发Dispatch Queue

并发dispatch queue可以同时并行地执行多个任务,不过并发queue仍然按先进先出的顺序来启动任务,并发queue会在之前任务完成之前就出列下一个任务并启动执行。并发queue同时执行的任务数量会根据应用和系统动态变化,各种因素包括:可用核数量、其它进程正在执行的工作数量、其它串行dispatch queue中优先任务的数量等。

系统给每个应用提供三个并发dispatch queue,所有应用全局共享,三个queue的区别是优先级。你不需要显式地创建这些queue,使用 dispatch_get_global_queue 函数来获取这三个queue:

  1. dispatch_queue_t aQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 

除了默认优先级的并发queue,你还可以获得高和低优先级的两个,分别使用 DISPATCH_QUEUE_PRIORITY_HIGH 和 DISPATCH_QUEUE_PRIORITY_LOW 常量来调用上面函数。

虽然dispatch queue是引用计数的对象,但你不需要retain和release全局并发queue。因为这些queue对应用是全局的,retain和release调用会被忽略。

你也不需要存储这三个queue的引用,每次都直接调用 dispatch_get_global_queue 获得queue就行了。

创建串行Dispatch Queue

应用的任务需要按特定顺序执行时,就需要使用串行Dispatch Queue,串行queue每次只能执行一个任务。你可以使用串行queue来替代锁,保护共享资源或可变的数据结构。和锁不一样的是,串行queue确保任务按可预测的顺序执行。而且只要你异步地提交任务到串行queue,就永远不会产生死锁。

你必须显式地创建和管理所有你使用的串行queue,应用可以创建任意数量的串行queue,但不要为了同时执行更多任务而创建更多的串行queue。如果你需要并发地执行大量任务,应该把任务提交到全局并发Queue。

创建串行queue时,你需要明确自己的目的,如保护共享资源,或同步应用的某些关键行为。

dispatch_queue_create 函数创建串行queue,两个参数分别是queue名和一组queue属性。调试器和性能工具会显示queue的名字,便于你跟踪任务的执行。

  1. dispatch_queue_t queue; 
  2. queue = dispatch_queue_create("com.example.MyQueue", NULL); 

运行时获得公共Queue

Grand Central Disaptch提供函数,让应用访问几个公共dispatch queue:

使用 dispatch_get_current_queue 函数作为调试用途,或者测试当前queue的标识。在block对象中调用这个函数会返回block提交到的queue(这个时候queue应该正在执行中)。在block对象之外调用这个函数会返回应用的默认并发queue。

使用 dispatch_get_main_queue 函数获得应用主线程关联的串行dispatch queue。Cocoa 应用、调用了 dispatch_main 函数或配置了run loop(CFRunLoopRef 类型 或一个 NSRunLoop 对象)的应用,会自动创建这个queue。

使用 dispatch_get_global_queue 来获得共享的并发queue

Dispatch Queue的内存管理

Dispatch Queue和其它dispatch对象都是引用计数的数据类型。当你创建一个串行dispatch queue时,初始引用计数为1,你可以使用 dispatch_retain 和 dispatch_release 函数来增加和减少引用计数。当引用计数到达0时,系统会异步地销毁这个queue。

对dispatch对象(如queue)retain和release是很重要的,确保它们被使用时能够保留在内存中。和内存托管的Cocoa对象一样,通用的规则是如果你使用一个传递给你代码中的queue,你应该在使用前retain,使用完之后release。

你不需要retain或release全局dispatch queue,包括全局并发 dispatch queue和main dispatch queue。

即使你实现的是自动垃圾收集的应用,也需要retain和release你的dispatch queue和其它dispatch对象。Grand Central Disaptch不支持垃圾收集模型来回收内存。

在Queue中存储自定义上下文信息

所有dispatch对象(包括dispatch queue)都允许你关联custom context data。使用 dispatch_set_context 和 dispatch_get_context 函数来设置和获取对象的上下文数据。系统不会使用你的上下文数据,所以需要你自己在适当的时候分配和销毁这些数据。

对于Queue,你可以使用上下文数据来存储一个指针,指向Objective-C对象或其它数据结构,协助标识这个queue或代码的其它用途。你可以使用queue的finalizer函数来销毁(或解除关联)上下文数据。

为Queue提供一个清理函数

在创建串行dispatch queue之后,可以附加一个finalizer函数,在queue被销毁之前执行自定义的清理操作。使用 dispatch_set_finalizer_f 函数为queue指定一个清理函数,当queue的引用计数到达0时,就会执行该清理函数。你可以使用清理函数来解除queue关联的上下文数据,而且只有上下文指针不为NULL时才会调用这个清理函数。

下面例子演示了自定义finalizer函数的使用,你需要自己提供 myInitializeDataContextFunction 和 myCleanUpDataContextFunction 函数,用于初始化和清理上下文数据。

  1. void myFinalizerFunction(void *context) 
  2.     MyDataContext* theData = (MyDataContext*)context; 
  3.   
  4.     // Clean up the contents of the structure 
  5.     myCleanUpDataContextFunction(theData); 
  6.   
  7.     // Now release the structure itself. 
  8.     free(theData); 
  9.   
  10. dispatch_queue_t createMyQueue() 
  11.     MyDataContext*  data = (MyDataContext*) malloc(sizeof(MyDataContext)); 
  12.     myInitializeDataContextFunction(data); 
  13.   
  14.     // Create the queue and set the context data. 
  15.     dispatch_queue_t serialQueue = dispatch_queue_create("com.example.CriticalTaskQueue", NULL); 
  16.     if (serialQueue) 
  17.     { 
  18.         dispatch_set_context(serialQueue, data); 
  19.         dispatch_set_finalizer_f(serialQueue, &myFinalizerFunction); 
  20.     } 
  21.   
  22.     return serialQueue; 

添加任务到Queue

要执行一个任务,你需要将它dispatch到一个适当的dispatch queue,你可以同步或异步地dispatch一个任务,也可以单个或按组来dispatch。一旦进入到queue,queue会负责尽快地执行你的任务。

添加单个任务到Queue

你可以异步或同步地添加一个任务到Queue,尽可能地使用 dispatch_async 或 dispatch_async_f 函数异步地dispatch任务。因为添加任务到Queue中时,无法确定这些代码什么时候能够执行。因此异步地添加block或函数,可以让你立即调度这些代码的执行,然后调用线程可以继续去做其它事情。

特别是应用主线程一定要异步地dispatch任务,这样才能及时地响应用户事件。

少数时候你可能希望同步地dispatch任务,以避免竞争条件或其它同步错误。使用 dispatch_sync 和 dispatch_sync_f 函数同步地添加任务到Queue,这两个函数会阻塞,直到相应任务完成执行。

绝对不要在任务中调用 dispatch_sync 或 dispatch_sync_f 函数,并同步dispatch新任务到当前正在执行的queue。对于串行queue这一点特别重要,因为这样做肯定会导致死锁;而并发queue也应该避免这样做。

  1. dispatch_queue_t myCustomQueue; 
  2. myCustomQueue = dispatch_queue_create("com.example.MyCustomQueue", NULL); 
  3.   
  4. dispatch_async(myCustomQueue, ^{ 
  5.     printf("Do some work here.\n"); 
  6. }); 
  7.   
  8. printf("The first block may or may not have run.\n"); 
  9.   
  10. dispatch_sync(myCustomQueue, ^{ 
  11.     printf("Do some more work here.\n"); 
  12. }); 
  13. printf("Both blocks have completed.\n"); 

任务完成时执行Completion Block

dispatch到queue中的任务,通常与创建任务的代码独立运行。在任务完成时,应用可能希望得到通知并使用任务完成的结果数据。在传统的异步编程模型中,你可能会使用回调机制,不过dispatch queue允许你使用Completion Block。

Completion Block是你dispatch到queue的另一段代码,在原始任务完成时自动执行。调用代码在启动任务时通过参数提供Completion Block。任务代码只需要在完成工作时提交指定的Block或函数到指定的queue。

下面代码使用block实现了平均数,***两个参数允许调用方指定一个queue和报告结果的block。在平均数函数完成计算后,会传递结果到指定的block,并dispatch到指定的queue。为了防止queue被过早地释放,必须首先retain这个queue,然后在dispatch这个Completion Block之后,再release这个queue。

  1. void average_async(int *data, size_t len, 
  2.    dispatch_queue_t queue, void (^block)(int)) 
  3.    // Retain the queue provided by the user to make 
  4.    // sure it does not disappear before the completion 
  5.    // block can be called. 
  6.    dispatch_retain(queue); 
  7.   
  8.    // Do the work on the default concurrent queue and then 
  9.    // call the user-provided block with the results. 
  10.    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{ 
  11.       int avg = average(data, len); 
  12.       dispatch_async(queue, ^{ block(avg);}); 
  13.   
  14.       // Release the user-provided queue when done 
  15.       dispatch_release(queue); 
  16.    }); 

并发地执行Loop Iteration

如果你使用循环执行固定次数的迭代,并发dispatch queue可能会提高性能。例如下面for循环:

  1. for (i = 0; i < count; i++) { 
  2.    printf("%u\n",i); 

如果每次迭代执行的任务与其它迭代独立无关,而且循环迭代执行顺序也无关紧要的话,你可以调用 dispatch_apply 或 dispatch_apply_f 函数来替换循环。这两个函数为每次循环迭代将指定的block或函数提交到queue。当dispatch到并发queue时,就有可能同时执行多个循环迭代。

调用 dispatch_apply 或 dispatch_apply_f 时你可以指定串行或并发queue。并发queue允许同时执行多个循环迭代,而串行queue就没太大必要使用了。

和普通for循环一样,dispatch_apply 和 dispatch_apply_f 函数也是在所有迭代完成之后才会返回。因此在queue上下文执行的代码中再次调用这两个函数时,必须非常小心。如果你传递的参数是串行queue,而且正是执行当前代码的Queue,就会产生死锁。

另外这两个函数还会阻塞当前线程,因此在主线程中调用这两个函数同样必须小心,可能会阻止事件处理循环并无法响应用户事件。所以如果循环代码需要一定的时间执行,你可以考虑在另一个线程中调用这两个函数。

下面代码使用 dispatch_apply 替换了for循环,你传递的block必须包含一个参数,用来标识当前循环迭代。***次迭代这个参数值为0,第二次时为1,***一次值为count - 1。

  1. dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  2.   
  3. dispatch_apply(count, queue, ^(size_t i) { 
  4.    printf("%u\n",i); 
  5. }); 

循环迭代执行的工作量需要仔细平衡,太多的话会降低响应性;太少则会影响整体性能,因为调度的开销大于实际执行代码。

在主线程中执行任务

Grand Central Disaptch提供一个特殊dispatch queue,可以在应用的主线程中执行任务。应用主线程设置了run loop(由CFRunLoopRef 类型或 NSRunLoop 对象管理),就会自动创建这个queue,并且自动drain。非Cocoa应用如果不显式地设置run loop,就必须显式地调用dispatch_main 函数来显式地drain这个dispatch queue。否则虽然你可以添加任务到queue,但任务永远不会被执行。

调用 dispatch_get_main_queue 函数获得应用主线程的dispatch queue。添加到这个queue的任务由主线程串行化执行,因此你可以在应用的某些地方使用这个queue作为同步点。

任务中使用Objective-C对象

Grand Central Disaptch支持Cocoa内存管理机制,因此可以在提交到queue的block中自由地使用Objective-C对象。每个dispatch queue维护自己的autorelease pool确保释放autorelease对象,但是queue不保证这些对象实际释放的时间。在自动垃圾收集的应用中,Grand Central Disaptch会在垃圾收集系统中注册自己创建的每个线程。

如果应用消耗大量内存,并且创建大量autorelease对象,你需要创建自己的autorelease pool,用来及时地释放不再使用的对象。

挂起和继续queue

我们可以暂停一个queue以阻止它执行block对象,使用 dispatch_suspend 函数挂起一个dispatch queue;使用 dispatch_resume 函数继续dispatch queue。调用 dispatch_suspend 会增加queue的引用计数,调用 dispatch_resume 则减少queue的引用计数。当引用计数大于0时,queue就保持挂起状态。因此你必须对应地调用suspend和resume函数。

挂起和继续是异步的,而且只在执行block之间生效。挂起一个queue不会导致正在执行的block停止。

使用Dispatch Semaphore控制有限资源的使用

如果提交到dispatch queue中的任务需要访问某些有限资源,可以使用dispatch semaphore来控制同时访问这个资源的任务数量。dispatch semaphore和普通的信号量类似,唯一的区别是当资源可用时,需要更少的时间来获得dispatch semaphore。

使用dispatch semaphore的过程如下:

使用 dispatch_semaphore_create 函数创建semaphore,指定正数值表示资源的可用数量。

在每个任务中,调用 dispatch_semaphore_wait 来等待Semaphore

当上面调用返回时,获得资源并开始工作

使用完资源后,调用 dispatch_semaphore_signal 函数释放和signal这个semaphore

  1. // Create the semaphore, specifying the initial pool size 
  2. dispatch_semaphore_t fd_sema = dispatch_semaphore_create(getdtablesize() / 2); 
  3.   
  4. // Wait for a free file descriptor 
  5. dispatch_semaphore_wait(fd_sema, DISPATCH_TIME_FOREVER); 
  6. fd = open("/etc/services", O_RDONLY); 
  7.   
  8. // Release the file descriptor when done 
  9. close(fd); 
  10. dispatch_semaphore_signal(fd_sema); 

等待queue中的一组任务

Dispatch group用来阻塞一个线程,直到一个或多个任务完成执行。有时候你必须等待任务完成的结果,然后才能继续后面的处理。dispatch group也可以替代线程join。

基本的流程是设置一个组,dispatch任务到queue,然后等待结果。你需要使用 dispatch_group_async 函数,会关联任务到相关的组和queue。使用 dispatch_group_wait 等待一组任务完成。

  1. dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  2. dispatch_group_t group = dispatch_group_create(); 
  3.   
  4. // Add a task to the group 
  5. dispatch_group_async(group, queue, ^{ 
  6.    // Some asynchronous work 
  7. }); 
  8.   
  9. // Do some other work while the tasks execute. 
  10.   
  11. // When you cannot make any more forward progress, 
  12. // wait on the group to block the current thread. 
  13. dispatch_group_wait(group, DISPATCH_TIME_FOREVER); 
  14.   
  15. // Release the group when it is no longer needed. 
  16. dispatch_release(group); 

Dispatch Queue和线程安全性

使用Dispatch Queue实现应用并发时,也需要注意线程安全性:

Dispatch queue本身是线程安全的。换句话说,你可以在应用的任意线程中提交任务到dispatch queue,不需要使用锁或其它同步机制。

不要在执行任务代码中调用 dispatch_sync 函数调度相同的queue,这样做会死锁这个queue。如果你需要dispatch到当前queue,需要使用 dispatch_async 函数异步调度

避免在提交到dispatch queue的任务中获得锁,虽然在任务中使用锁是安全的,但在请求锁时,如果锁不可用,可能会完全阻塞串行queue。类似的,并发queue等待锁也可能阻止其它任务的执行。如果代码需要同步,就使用串行dispatch queue。

虽然可以获得运行任务的底层线程的信息,***不要这样做。#p#

Dispatch Sources

现代系统通常提供异步接口,允许应用向系统提交请求,然后在系统处理请求时应用可以继续处理自己的事情。Grand Central Dispatch正是基于这个基本行为而设计,允许你提交请求,并通过block和dispatch queue报告结果。

dispatch source是基础数据类型,协调特定底层系统事件的处理。Grand Central Dispatch支持以下dispatch source:

Timer dispatch source:定期产生通知

Signal dispatch source:UNIX信号到达时产生通知

Descriptor dispatch source:各种文件和socket操作的通知

数据可读

数据可写

文件在文件系统中被删除、移动、重命名

文件元数据信息改变

Process dispatch source:进程相关的事件通知

当进程退出时

当进程发起fork或exec等调用

信号被递送到进程

Mach port dispatch source:Mach相关事件的通知

Custom dispatch source:你自己定义并自己触发

Dispatch source替代了异步回调函数,来处理系统相关的事件。当你配置一个dispatch source时,你指定要监测的事件、dispatch queue、以及处理事件的代码(block或函数)。当事件发生时,dispatch source会提交你的block或函数到指定的queue去执行

和手工提交到queue的任务不同,dispatch source为应用提供连续的事件源。除非你显式地取消,dispatch source会一直保留与dispatch queue的关联。只要相应的事件发生,就会提交关联的代码到dispatch queue去执行。

为了防止事件积压到dispatch queue,dispatch source实现了事件合并机制。如果新事件在上一个事件处理器出列并执行之前到达,dispatch source会将新旧事件的数据合并。根据事件类型的不同,合并操作可能会替换旧事件,或者更新旧事件的信息。

创建Dispatch Source

创建dispatch source需要同时创建事件源和dispatch source本身。事件源是处理事件所需要的native数据结构,例如基于描述符的dispatch source,你需要打开描述符;基于进程的事件,你需要获得目标程序的进程ID。

然后可以如下创建相应的dispatch source:

使用 dispatch_source_create 函数创建dispatch source

配置dispatch source:

为dispatch source设置一个事件处理器

对于定时器源,使用 dispatch_source_set_timer 函数设置定时器信息

为dispatch source赋予一个取消处理器(可选)调用 dispatch_resume 函数开始处理事件由于dispatch source必须进行额外的配置才能被使用,dispatch_source_create 函数返回的dispatch source将处于挂起状态。此时dispatch source会接收事件,但是不会进行处理。这时候你可以安装事件处理器,并执行额外的配置。

编写和安装一个事件处理器

你需要定义一个事件处理器来处理事件,可以是函数或block对象,并使用 dispatch_source_set_event_handler 或 dispatch_source_set_event_handler_f 安装事件处理器。事件到达时,dispatch source会提交你的事件处理器到指定的dispatch queue,由queue执行事件处理器。

事件处理器的代码负责处理所有到达的事件。如果事件处理器已经在queue中并等待处理已经到达的事件,如果此时又来了一个新事件,dispatch source会合并这两个事件。事件处理器通常只能看到***事件的信息,不过某些类型的dispatch source也能获得已经发生以及合并的事件信息。

如果事件处理器已经开始执行,一个或多个新事件到达,dispatch source会保留这些事件,直到前面的事件处理器完成执行。然后以新事件再次提交处理器到queue。

函数事件处理器有一个context指针指向dispatch source对象,没有返回值。Block事件处理器没有参数,也没有返回值。

  1. // Block-based event handler  
  2. void (^dispatch_block_t)(void)  
  3.    
  4. // Function-based event handler  
  5. void (*dispatch_function_t)(void *)  

在事件处理器中,你可以从dispatch source中获得事件的信息,函数处理器可以直接使用参数指针,Block则必须自己捕获到dispatch source指针,一般block定义时会自动捕获到外部定义的所有变量。

  1. dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_READ, 
  2.                                  myDescriptor, 0, myQueue); 
  3. dispatch_source_set_event_handler(source, ^{ 
  4.    // Get some data from the source variable, which is captured 
  5.    // from the parent context. 
  6.    size_t estimated = dispatch_source_get_data(source); 
  7.   
  8.    // Continue reading the descriptor... 
  9. }); 
  10. dispatch_resume(source); 

Block捕获外部变量允许更大的灵活性和动态性。当然,在Block中这些变量默认是只读的,虽然可以使用__block来修改捕获的变量,但是你***不要在事件处理器中这样做。因为Dispatch source异步执行事件处理器,当事件处理器修改原始外部变量时,有可能这些变量已经不存在了。

下面是事件处理器能够获得的事件信息:

函数 描述
dispatch_source_get_handle 这个函数返回dispatch source管理的底层系统数据类型。

对于描述符dispatch source,函数返回一个int,表示关联的描述符

对于信号dispatch source,函数返回一个int,表示***事件的信号数值

对于进程dispatch source,函数返回一个pid_t数据结构,表示被监控的进程

对于Mach port dispatch source,函数返回一个 mach_port_t 数据结构

对于其它dispatch source,函数返回的值未定义
dispatch_source_get_data 这个函数返回事件关联的所有未决数据。

对于从文件中读取数据的描述符dispatch source,这个函数返回可以读取的字节数

对于向文件中写入数据的描述符dispatch source,如果可以写入,则返回正数值

对于监控文件系统活动的描述符dispatch source,函数返回一个常量,表示发生的事件类型,参考 dispatch_source_vnode_flags_t 枚举类型

对于进程dispatch source,函数返回一个常量,表示发生的事件类型,参考 dispatch_source_proc_flags_t 枚举类型

对于Mach port dispatch source,函数返回一个常量,表示发生的事件类型,参考 dispatch_source_machport_flags_t 枚举类型

对于自定义dispatch source,函数返回从现有数据创建的新数据,以及传递给 dispatch_source_merge_data 函数的新数据。
dispatch_source_get_mask 这个函数返回用来创建dispatch source的事件标志

对于进程dispatch source,函数返回dispatch source接收到的事件掩码,参考 dispatch_source_proc_flags_t 枚举类型

对于发送权利的Mach port dispatch source,函数返回期望事件的掩码,参考 dispatch_source_mach_send_flags_t 枚举类型

对于自定义 “或” 的dispatch source,函数返回用来合并数据值的掩码。

安装一个取消处理器

取消处理器在dispatch soruce释放之前执行清理工作。多数类型的dispatch source不需要取消处理器,除非你对dispatch source有自定义行为需要在释放时执行。但是使用描述符或Mach port的dispatch source必须设置取消处理器,用来关闭描述符或释放Mach port。否则可能导致微妙的bug,这些结构体会被系统其它部分或你的应用在不经意间重用。

你可以在任何时候安装取消处理器,但通常我们在创建dispatch source时就会安装取消处理器。使用 dispatch_source_set_cancel_handler 或 dispatch_source_set_cancel_handler_f 函数来设置取消处理器。

下面取消处理器关闭描述符:

  1. dispatch_source_set_cancel_handler(mySource, ^{ 
  2.    close(fd); // Close a file descriptor opened earlier. 
  3. }); 

修改目标Queue

在创建dispatch source时可以指定一个queue,用来执行事件处理器和取消处理器。不过你也可以使用 dispatch_set_target_queue 函数在任何时候修改目标queue。修改queue可以改变执行dispatch source事件的优先级。

修改dispatch source的目标queue是异步操作,dispatch source会尽可能快地完成这个修改。如果事件处理器已经进入queue并等待处理,它会继续在原来的Queue中执行。随后到达的所有事件的处理器都会在后面修改的queue中执行。

关联自定义数据到dispatch source

和Grand Central Dispatch的其它类型一样,你可以使用 dispatch_set_context 函数关联自定义数据到dispatch source。使用context指针存储事件处理器需要的任何数据。如果你在context指针中存储了数据,你就应该安装一个取消处理器,在dispatch source不再需要时释放这些context自定义数据。

如果你使用block实现事件处理器,你也可以捕获本地变量,并在Block中使用。虽然这样也可以代替context指针,但是你应该明智地使用Block捕获变量。因为dispatch source长时间存在于应用中,Block捕获指针变量时必须非常小心,因为指针指向的数据可能会被释放,因此需要复制数据或retain。不管使用哪种方法,你都应该提供一个取消处理器,在***释放这些数据。

Dispatch Source的内存管理

Dispatch Source也是引用计数的数据类型,初始计数为1,可以使用 dispatch_retain 和 dispatch_release 函数来增加和减少引用计数。引用计数到达0时,系统自动释放dispatch source数据结构。

dispatch source的所有权可以由dispatch source内部或外部进行管理。外部所有权时,另一个对象拥有dispatch source,并负责在不需要时释放它。内部所有权时,dispatch source自己拥有自己,并负责在适当的时候释放自己。虽然外部所有权很常用,当你希望创建自主dispatch source,并让它自己管理自己的行为时,可以使用内部所有权。例如dispatch source应用单一全局事件时,可以让它自己处理该事件,并立即退出。

Dispatch Source示例

创建一个定时器

定时器dispatch source定时产生事件,可以用来发起定时执行的任务,如游戏或其它图形应用,可以使用定时器来更新屏幕或动画。你也可以设置定时器,并在固定间隔事件中检查服务器的新信息。

所有定时器dispatch source都是间隔定时器,一旦创建,会按你指定的间隔定期递送事件。你需要为定时器dispatch source指定一个期望的定时器事件精度,也就是leeway值,让系统能够灵活地管理电源并唤醒内核。例如系统可以使用leeway值来提前或延迟触发定时器,使其更好地与其它系统事件结合。创建自己的定时器时,你应该尽量指定一个leeway值。

就算你指定leeway值为0,也不要期望定时器能够按照精确的纳秒来触发事件。系统会尽可能地满足你的需求,但是无法保证完全精确的触发时间。

当计算机睡眠时,定时器dispatch source会被挂起,稍后系统唤醒时,定时器dispatch source也会自动唤醒。根据你提供的配置,暂停定时器可能会影响定时器下一次的触发。如果定时器dispatch source使用 dispatch_time 函数或 DISPATCH_TIME_NOW 常量设置,定时器dispatch source会使用系统默认时钟来确定何时触发,但是默认时钟在计算机睡眠时不会继续。

如果你使用 dispatch_walltime 函数来设置定时器dispatch source,则定时器会根据挂钟时间来跟踪,这种定时器比较适合触发间隔相对比较大的场合,可以防止定时器触发间隔出现太大的误差。

下面是定时器dispatch source的一个例子,每30秒触发一次,leeway值为1,因为间隔相对较大,使用 dispatch_walltime 来创建定时器。定时器会立即触发***次,随后每30秒触发一次。 MyPeriodicTask 和 MyStoreTimer 是自定义函数,用于实现定时器的行为,并存储定时器到应用的数据结构。

  1. dispatch_source_t CreateDispatchTimer(uint64_t interval, 
  2.               uint64_t leeway, 
  3.               dispatch_queue_t queue, 
  4.               dispatch_block_t block) 
  5.    dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 
  6.                                                      0, 0, queue); 
  7.    if (timer) 
  8.    { 
  9.       dispatch_source_set_timer(timer, dispatch_walltime(NULL, 0), interval, leeway); 
  10.       dispatch_source_set_event_handler(timer, block); 
  11.       dispatch_resume(timer); 
  12.    } 
  13.    return timer; 
  14.   
  15. void MyCreateTimer() 
  16.    dispatch_source_t aTimer = CreateDispatchTimer(30ull * NSEC_PER_SEC, 
  17.                                1ull * NSEC_PER_SEC, 
  18.                                dispatch_get_main_queue(), 
  19.                                ^{ MyPeriodicTask(); }); 
  20.   
  21.    // Store it somewhere for later use. 
  22.     if (aTimer) 
  23.     { 
  24.         MyStoreTimer(aTimer); 
  25.     } 

虽然定时器dispatch source是接收时间事件的主要方法,你还可以使用其它选择。如果想在指定时间间隔后执行一个block,可以使用 dispatch_after 或 dispatch_after_f 函数。这两个函数非常类似于dispatch_async,但是只允许你指定一个时间值,时间一到就自动提交block到queue中执行,时间值可以指定为相对或绝对时间。

从描述符中读取数据

要从文件或socket中读取数据,需要打开文件或socket,并创建一个 DISPATCH_SOURCE_TYPE_READ 类型的dispatch source。你指定的事件处理器必须能够读取和处理描述符中的内容。对于文件,需要读取文件数据,并为应用创建适当的数据结构;对于网络socket,需要处理***接收到的网络数据。

读取数据时,你总是应该配置描述符使用非阻塞操作,虽然你可以使用 dispatch_source_get_data 函数查看当前有多少数据可读,但在你调用它和实际读取数据之间,可用的数据数量可能会发生变化。如果底层文件被截断,或发生网络错误,从描述符中读取会阻塞当前线程,停止在事件处理器中间并阻止dispatch queue去执行其它任务。对于串行queue,这样还可能会死锁,即使是并发queue,也会减少queue能够执行的任务数量。

下面例子配置dispatch source从文件中读取数据,事件处理器读取指定文件的全部内容到缓冲区,并调用一个自定义函数来处理这些数据。调用方可以使用返回的dispatch source在读取操作完成之后,来取消这个事件。为了确保dispatch queue不会阻塞,这里使用了fcntl函数,配置文件描述符执行非阻塞操作。dispatch source安装了取消处理器,确保***关闭了文件描述符。

  1. dispatch_source_t ProcessContentsOfFile(const char* filename) 
  2.    // Prepare the file for reading. 
  3.    int fd = open(filename, O_RDONLY); 
  4.    if (fd == -1) 
  5.       return NULL; 
  6.    fcntl(fd, F_SETFL, O_NONBLOCK);  // Avoid blocking the read operation 
  7.   
  8.    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  9.    dispatch_source_t readSource = dispatch_source_create(DISPATCH_SOURCE_TYPE_READ, 
  10.                                    fd, 0, queue); 
  11.    if (!readSource) 
  12.    { 
  13.       close(fd); 
  14.       return NULL; 
  15.    } 
  16.   
  17.    // Install the event handler 
  18.    dispatch_source_set_event_handler(readSource, ^{ 
  19.       size_t estimated = dispatch_source_get_data(readSource) + 1; 
  20.       // Read the data into a text buffer. 
  21.       char* buffer = (char*)malloc(estimated); 
  22.       if (buffer) 
  23.       { 
  24.          ssize_t actual = read(fd, buffer, (estimated)); 
  25.          Boolean done = MyProcessFileData(buffer, actual);  // Process the data. 
  26.   
  27.          // Release the buffer when done. 
  28.          free(buffer); 
  29.   
  30.          // If there is no more data, cancel the source. 
  31.          if (done) 
  32.             dispatch_source_cancel(readSource); 
  33.       } 
  34.     }); 
  35.   
  36.    // Install the cancellation handler 
  37.    dispatch_source_set_cancel_handler(readSource, ^{close(fd);}); 
  38.   
  39.    // Start reading the file. 
  40.    dispatch_resume(readSource); 
  41.    return readSource; 

在这个例子中,自定义的 MyProcessFileData 函数确定读取到足够的数据,返回YES告诉dispatch source读取已经完成,可以取消任务。通常读取描述符的dispatch source在还有数据可读时,会重复调度事件处理器。如果socket连接关闭或到达文件末尾,dispatch source自动停止调度事件处理器。如果你自己确定不再需要dispatch source,也可以手动取消它。

向描述符写入数据

向文件或socket写入数据非常类似于读取数据,配置描述符为写入操作后,创建一个 DISPATCH_SOURCE_TYPE_WRITE 类型的dispatch source,创建好之后,系统会调用事件处理器,让它开始向文件或socket写入数据。当你完成写入后,使用 dispatch_source_cancel 函数取消dispatch source。

写入数据也应该配置文件描述符使用非阻塞操作,虽然 dispatch_source_get_data 函数可以查看当前有多少可用写入空间,但这个值只是建议性的,而且在你执行写入操作时可能会发生变化。如果发生错误,写入数据到阻塞描述符,也会使事件处理器停止在执行中途,并阻止dispatch queue执行其它任务。串行queue会产生死锁,并发queue则会减少能够执行的任务数量。

下面是使用dispatch source写入数据到文件的例子,创建文件后,函数传递文件描述符到事件处理器。MyGetData函数负责提供要写入的数据,在数据写入到文件之后,事件处理器取消dispatch source,阻止再次调用。此时dispatch source的拥有者需负责释放dispatch source。

  1. dispatch_source_t WriteDataToFile(const char* filename) 
  2.     int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 
  3.                       (S_IRUSR | S_IWUSR | S_ISUID | S_ISGID)); 
  4.     if (fd == -1) 
  5.         return NULL; 
  6.     fcntl(fd, F_SETFL); // Block during the write. 
  7.   
  8.     dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  9.     dispatch_source_t writeSource = dispatch_source_create(DISPATCH_SOURCE_TYPE_WRITE, 
  10.                             fd, 0, queue); 
  11.     if (!writeSource) 
  12.     { 
  13.         close(fd); 
  14.         return NULL; 
  15.     } 
  16.   
  17.     dispatch_source_set_event_handler(writeSource, ^{ 
  18.         size_t bufferSize = MyGetDataSize(); 
  19.         void* buffer = malloc(bufferSize); 
  20.   
  21.         size_t actual = MyGetData(buffer, bufferSize); 
  22.         write(fd, buffer, actual); 
  23.   
  24.         free(buffer); 
  25.   
  26.         // Cancel and release the dispatch source when done. 
  27.         dispatch_source_cancel(writeSource); 
  28.     }); 
  29.   
  30.     dispatch_source_set_cancel_handler(writeSource, ^{close(fd);}); 
  31.     dispatch_resume(writeSource); 
  32.     return (writeSource); 

监控文件系统对象

如果需要监控文件系统对象的变化,可以设置一个 DISPATCH_SOURCE_TYPE_VNODE 类型的dispatch source,你可以从这个dispatch source中接收文件删除、写入、重命名等通知。你还可以得到文件的特定元数据信息变化通知。

在dispatch source正在处理事件时,dispatch source中指定的文件描述符必须保持打开状态。

下面例子监控一个文件的文件名变化,并在文件名变化时执行一些操作(自定义的 MyUpdateFileName 函数)。由于文件描述符专门为dispatch source打开,dispatch source安装了取消处理器来关闭文件描述符。这个例子中的文件描述符关联到底层的文件系统对象,因此同一个dispatch source可以用来检测多次文件名变化。

  1. dispatch_source_t MonitorNameChangesToFile(const char* filename) 
  2.    int fd = open(filename, O_EVTONLY); 
  3.    if (fd == -1) 
  4.       return NULL; 
  5.   
  6.    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  7.    dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_VNODE, 
  8.                 fd, DISPATCH_VNODE_RENAME, queue); 
  9.    if (source) 
  10.    { 
  11.       // Copy the filename for later use. 
  12.       int length = strlen(filename); 
  13.       char* newString = (char*)malloc(length + 1); 
  14.       newString = strcpy(newString, filename); 
  15.       dispatch_set_context(source, newString); 
  16.   
  17.       // Install the event handler to process the name change 
  18.       dispatch_source_set_event_handler(source, ^{ 
  19.             const char*  oldFilename = (char*)dispatch_get_context(source); 
  20.             MyUpdateFileName(oldFilename, fd); 
  21.       }); 
  22.   
  23.       // Install a cancellation handler to free the descriptor 
  24.       // and the stored string. 
  25.       dispatch_source_set_cancel_handler(source, ^{ 
  26.           char* fileStr = (char*)dispatch_get_context(source); 
  27.           free(fileStr); 
  28.           close(fd); 
  29.       }); 
  30.   
  31.       // Start processing events. 
  32.       dispatch_resume(source); 
  33.    } 
  34.    else 
  35.       close(fd); 
  36.   
  37.    return source; 

监测信号

应用可以接收许多不同类型的信号,如不可恢复的错误(非法指令)、或重要信息的通知(如子进程退出)。传统编程中,应用使用 sigaction 函数安装信号处理器函数,信号到达时同步处理信号。如果你只是想信号到达时得到通知,并不想实际地处理该信号,可以使用信号dispatch source来异步处理信号。

信号dispatch source不能替代 sigaction 函数提供的同步信号处理机制。同步信号处理器可以捕获一个信号,并阻止它中止应用。而信号dispatch source只允许你监测信号的到达。此外,你不能使用信号dispatch source获取所有类型的信号,如SIGILL, SIGBUS, SIGSEGV信号。

由于信号dispatch source在dispatch queue中异步执行,它没有同步信号处理器的一些限制。例如信号dispatch source的事件处理器可以调用任何函数。灵活性增大的代价是,信号到达和dispatch source事件处理器被调用的延迟可能会增大。

下面例子配置信号dispatch source来处理SIGHUP信号,事件处理器调用 MyProcessSIGHUP 函数,用来处理信号。

  1. void InstallSignalHandler() 
  2.    // Make sure the signal does not terminate the application. 
  3.    signal(SIGHUP, SIG_IGN); 
  4.   
  5.    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  6.    dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL, SIGHUP, 0, queue); 
  7.   
  8.    if (source) 
  9.    { 
  10.       dispatch_source_set_event_handler(source, ^{ 
  11.          MyProcessSIGHUP(); 
  12.       }); 
  13.   
  14.       // Start processing signals 
  15.       dispatch_resume(source); 
  16.    } 

监控进程

进程dispatch source可以监控特定进程的行为,并适当地响应。父进程可以使用dispatch source来监控自己创建的所有子进程,例如监控子进程的死亡;类似地,子进程也可以使用dispatch source来监控父进程,例如在父进程退出时自己也退出。

下面例子安装了一个进程dispatch source,监控父进程的终止。当父进程退出时,dispatch source设置一些内部状态信息,告知子进程自己应该退出。MySetAppExitFlag 函数应该设置一个适当的标志,允许子进程终止。由于dispatch source自主运行,因此自己拥有自己,在程序关闭时会取消并释放自己。

  1. void MonitorParentProcess() 
  2.    pid_t parentPID = getppid(); 
  3.   
  4.    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
  5.    dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_PROC, 
  6.                                                       parentPID, DISPATCH_PROC_EXIT, queue); 
  7.    if (source) 
  8.    { 
  9.       dispatch_source_set_event_handler(source, ^{ 
  10.          MySetAppExitFlag(); 
  11.          dispatch_source_cancel(source); 
  12.          dispatch_release(source); 
  13.       }); 
  14.       dispatch_resume(source); 
  15.    } 

取消一个Dispatch Source

除非你显式地调用 dispatch_source_cancel 函数,dispatch source将一直保持活动,取消一个dispatch source会停止递送新事件,并且不能撤销。因此你通常在取消dispatch source后立即释放它:

  1. void RemoveDispatchSource(dispatch_source_t mySource) 
  2.    dispatch_source_cancel(mySource); 
  3.    dispatch_release(mySource); 

 

取消一个dispatch source是异步操作,调用 dispatch_source_cancel 之后,不会再有新的事件被处理,但是正在被dispatch source处理的事件会继续被处理完成。在处理完***的事件之后,dispatch source会执行自己的取消处理器。

取消处理器是你***的执行机会,在那里执行内存或资源的释放工作。例如描述符或mach port类型的dispatch source,必须提供取消处理器,用来关闭描述符或mach port

挂起和继续Dispatch Source

你可以使用 dispatch_suspend 和 dispatch_resume 临时地挂起和继续dispatch source的事件递送。这两个函数分别增加和减少dispatch 对象的挂起计数。因此,你必须每次 dispatch_suspend 调用之后,都需要相应的 dispatch_resume 才能继续事件递送。

挂起一个dispatch source期间,发生的任何事件都会被累积,直到dispatch source继续。但是不会递送所有事件,而是先合并到单一事件,然后再一次递送。例如你监控一个文件的文件名变化,就只会递送***一次的变化事件。#p#

Migrating Away from Threads

从现有的线程代码迁移到Grand Central Dispatch和Operation对象有许多方法,尽管可能不是所有线程代码都能够执行迁移,但是迁移可能提升性能,并简化你的代码。

使用dispatch queue和Operaiton queue相比线程拥有许多优点:

应用不再需要存储线程栈到内存空间

消除了创建和配置线程的代码

消除了管理和调度线程工作的代码

简化了你要编写的代码

使用Dispatch Queue替代线程

首先考虑应用可能使用线程的几种方式:

单一任务线程:创建一个线程执行单一任务,任务完成时释放线程

工作线程(Worker):创建一个或多个工作线程执行特定的任务,定期地分配任务给每个线程

线程池:创建一个通用的线程池,并为每个线程设置run loop,当你需要执行一个任务时,从池中抓取一个线程,并分配任务给它。如果没有空闲线程可用,任务进入等待队列。

虽然这些看上去是完全不同的技术,但实际上只是相同原理的变种。应用都是使用线程来执行某些任务,区别在于管理线程和任务排队的代码。使用dispatch queue和operation queue,你可以消除所有线程、及线程通信的代码,集中精力编写处理任务的代码。

如果你使用了上面的线程模型,你应该已经非常了解应用需要执行的任务类型,只需要封装任务到Operation对象或Block对象,然后dispatch到适当的queue,就一切搞定!

对于那些不使用锁的任务,你可以直接使用以下方法来进行迁移:

单一任务线程,封装任务到block或operation对象,并提交到并发queue

工作线程,首先你需要确定使用串行queue还是并发queue,如果工作线程需要同步特定任务的执行,就应该使用串行queue。如果工作线程只是执行任意任务,任务之间并无关联,就应该使用并发queue

线程池,封装任务到block或operation对象,并提交到并发queue中执行

当然,上面只是简单的情况。如果任务会争夺共享资源,理想的解决方案当然是消除或最小化共享资源的争夺。如果有办法重构代码,消除任务彼此对共享资源的依赖,这是最理想的。

如果做不到消除共享资源依赖,你仍然可以使用queue,因为queue能够提供可预测的代码执行顺序。可预测意味着你不需要锁或其它重量级的同步机制,就可以实现代码的同步执行。

你可以使用queue来取代锁执行以下任务:

如果任务必须按特定顺序执行,提交到串行dispatch queue;如果你想使用Operation queue,就使用Operation对象依赖来确保这些对象的执行顺序。

如果你已经使用锁来保护共享资源,创建一个串行queue来执行任务并修改该资源。串行queue可以替换现有的锁,直接作为同步机制使用。

如果你使用线程join来等待后台任务完成,考虑使用dispatch group;也可以使用一个 NSBlockOperation 对象,或者Operation对象依赖,同样可以达到group-completion的行为。

如果你使用“生产者-消费者”模型来管理有限资源池,考虑使用 dispatch queue 来简化“生产者-消费者”

如果你使用线程来读取和写入描述符,或者监控文件操作,使用dispatch source

记住queue不是替代线程的***药!queue提供的异步编程模型适合于延迟无关紧要的场合。虽然queue提供配置任务执行优先级的方法,但更高的优先级也不能确保任务一定能在特定时间得到执行。因此线程仍然是实现最小延迟的适当选择,例如音频和视频playback等场合。

消除基于锁的代码

在线程代码中,锁是传统的多个线程之间同步资源的访问机制。但是锁的开销本身比较大,线程还需等待锁的释放。

使用queue替代基于锁的线程代码,消除了锁带来的开销,并且简化了代码编写。你可以将任务放到串行queue,来控制任务对共享资源的访问。queue的开销要远远小于锁,因为将任务放入queue不需要陷入内核来获得mutex

将任务放入queue时,你做的主要决定是同步还是异步,异步提交任务到queue让当前线程继续运行;同步提交任务则阻塞当前线程,直到任务执行完成。两种机制各有各的用途,不过通常异步优先于同步。

实现异步锁

异步锁可以保护共享资源,而又不阻塞任何修改资源的代码。当代码的部分工作需要修改一个数据结构时,可以使用异步锁。使用传统的线程,你的实现方式是:获得共享资源的锁,做必要的修改,释放锁,继续任务的其它部分工作。但是使用dispatch queue,调用代码可以异步修改,无需等待这些修改操作完成。

下面是异步锁实现的一个例子,受保护的资源定义了自己的串行dispatch queue。调用代码提交一个block到这个queue,在block中执行对资源的修改。由于queue串行的执行所有block,对这个资源的修改可以确保按顺序进行;而且由于任务是异步执行的,调用线程不会阻塞。

dispatch_async(obj->serial_queue, ^{

// Critical section

});

同步执行临界区

如果当前代码必须等到指定任务完成,你可以使用 dispatch_sync 函数同步的提交任务,这个函数将任务添加到dispatch queue,并阻塞当前线程直到任务完成执行。dispatch queue本身可以是串行或并发queue,你可以根据具体的需要来选择使用。由于 dispatch_sync 函数会阻塞当前线程,你只应该在确实需要的时候才使用。

下面是使用 dispatch_sync 实现临界区的例子:

dispatch_sync(my_queue, ^{

// Critical section

});

如果你已经使用串行queue保护一个共享资源,同步提交到串行queue,并不能比异步提交提供更多的保护。同步提交的唯一理由是,阻止当前代码在临界区完成之前继续执行。如果当前代码不需要等待临界区完成,或者可以简单的提交接下来的任务到相同的串行queue,就应该使用异步提交。

改进循环代码

如果循环每次迭代执行的工作互相独立,可以考虑使用 dispatch_apply 或 dispatch_apply_f 函数来重新实现循环。这两个函数将循环的每次迭代提交到dispatch queue进行处理。结合并发queue使用时,可以并发地执行迭代以提高性能。

dispatch_apply 和 dispatch_apply_f 是同步函数,会阻塞当前线程直到所有循环迭代执行完成。当提交到并发queue时,循环迭代的执行顺序是不确定的。因此你用来执行循环迭代的Block对象(或函数)必须可重入(reentrant)。

下面例子使用dispatch来替换循环,你传递给 dispatch_apply 或 dispatch_apply_f 的Block或函数必须有一个整数参数,用来标识当前的循环迭代:

queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_apply(count, queue, ^(size_t i) {

printf("%u\n", i);

});

你需要明智地使用这项技术,因为dispatch queue的开销虽然非常小,但仍然存在,你的循环代码必须拥有足够的工作量,才能忽略掉dispatch queue的这些开销。

提升每次循环迭代工作量最简单的办法是striding(跨步),重写block代码执行多个循环迭代。从而减少了 dispatch_apply 函数指定的count值。

int stride = 137;

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_apply(count / stride, queue, ^(size_t idx){

size_t j = idx * stride;

size_t j_stop = j + stride;

do {

printf("%u\n", (unsigned int)j++);

}while (j < j_stop);

});

// 执行剩余的循环迭代

size_t i;

for (i = count - (count % stride); i < count; i++)

printf("%u\n", (unsigned int)i);

如果循环迭代次数非常多,使用stride可以提升性能。

替换线程Join

线程join允许你生成多个线程,然后让当前线程等待所有线程完成。线程创建子线程时指定为joinable,如果父线程在子线程完成之前不能继续处理,就可以join子线程。join会阻塞父线程直到子线程完成任务并退出,这时候父线程可以获得子线程的结果状态,并继续自己的工作。父线程可以一次性join多个子线程。

Dispatch Group提供了类似于线程join的语义,但拥有更多优点。dispatch group可以让线程阻塞直到一个或多个任务完成。和线程join不一样的是,dispatch goup同时等待所有子任务完成。而且由于dispatch group使用dispatch queue来执行任务,更加高效。

以下步骤可以使用dispatch group替换线程join:

使用 dispatch_group_create 函数创建一个新的dispatch group

使用 dispatch_group_async 或 dispatch_group_async_f 函数添加任务到Group,这些是你要等待完成的任务

如果当前线程不能继续处理任何工作,调用 dispatch_group_wait 函数等待这个group,会阻塞当前线程直到group中的所有任务执行完成。

如果你使用Operation对象来实现任务,可以使用依赖来实现线程join。不过这时候不是让父线程等待所有任务完成,而是将父代码移到一个Operation对象,然后设置父Operation对象依赖于所有子Operation对象。这样父Operation对象就会等到所有子Operation执行完成后才开始执行。

修改“生产者-消费者”实现

生产者-消费者 模型可以管理有限数量动态生产的资源。生产者生成新资源,消费者等待并消耗这些资源。实现生产者-消费者模型的典型机制是条件或信号量。

使用条件(Condition)时,生产者线程通常如下:

锁住与condition关联的mutex(使用pthread_mutex_lock)

生产资源(或工作)

Signal条件变量,通知有资源(或工作)可以消费(使用pthread_cond_signal)

解锁mutex(使用pthread_mutex_unlock)

对应的消费者线程则如下:

锁住condition关联的mutex(使用pthread_mutex_lock)

设置一个while循环[list=1]

检查是否有资源(或工作)

如果没有资源(或工作),调用pthread_cond_wait阻塞当前线程,直到相应的condition触发

获得生产者提供的资源(或工作)解锁mutex(使用pthread_mutex_unlock)处理资源(或工作)使用dispatch queue,你可以简化生产者-消费者为一个调用:

dispatch_async(queue, ^{

// Process a work item.

});

当生产者有工作需要做时,只需要将工作添加到queue,并让queue去处理该工作。唯一需要确定的是queue的类型,如果生产者生成的任务需要按特定顺序执行,就使用串行queue;否则使用并发Queue,让系统尽可能多地同时执行任务。

替换Semaphore代码

使用信号量可以限制对共享资源的访问,你应该考虑使用dispatch semaphore来替换普通信号量。传统的信号量需要陷入内核,而dispatch semaphore可以在用户空间快速地测试状态,只有测试失败调用线程需要阻塞时才会陷入内核。这样dispatch semaphore拥有比传统semaphore快得多的性能。两者的行为是一致的。

替换Run-Loop代码

如果你使用run loop来管理一个或多个线程执行的工作,你会发现使用queue来实现和维护任务会简单许多。设置自定义run loop需要同时设置底层线程和run loop本身。run-loop代码则需要设置一个或多个run loop source,并编写回调来处理这些source事件到达。你可以创建一个串行queue,并dispatch任务到queue中,这样一行代码就能够替换原有的run-loop创建代码:

dispatch_queue_t myNewRunLoop = dispatch_queue_create("com.apple.MyQueue", NULL);

由于queue自动执行添加进来的任务,不需要编写额外的代码来管理queue。你也不需要创建和配置线程,更不需要创建或附加任何run-loop source。此外,你可以通过简单地添加任务就能让queue执行其它类型的任务,而run loop要实现这一点,必须修改现有run loop source,或者创建一个新的run loop source。

run loop的一个常用配置是处理网络socket异步到达的数据,现在你可以附加dispatch source到需要的queue中,来实现这个行为。dispatch source还能提供更多处理数据的选项,支持更多类型的系统事件处理。

与POSIX线程的兼容性

Grand Central Dispatch管理了任务和运行线程之间的关系,通常你应该避免在任务代码中使用POSIX线程函数,如果一定要使用,请小心。

应用不能删除或mutate不是自己创建的数据结构。使用dispatch queue执行的block对象不能调用以下函数:

pthread_detach

pthread_cancel

pthread_join

pthread_kill

pthread_exit

任务运行时修改线程状态是可以的,但你必须还原线程原来的状态。只要你记得还原线程的状态,下面函数是安全的:

pthread_setcancelstate

pthread_setcanceltype

pthread_setschedparam

pthread_sigmask

pthread_setspecific

特定block的执行线程可以在多次调用间会发生变化,因此应用不应该依赖于以下函数返回的信息:

pthread_self

pthread_getschedparam

pthread_get_stacksize_np

pthread_get_stackaddr_np

pthread_mach_thread_np

pthread_from_mach_thread_np

pthread_getspecific

Block必须捕获和禁止任何语言级的异常,Block执行期间的其它错误也应该由block处理,或者通知应用

责任编辑:佚名 来源: Cocoachina
相关推荐

2023-09-26 10:30:57

Linux编程

2013-07-16 13:39:11

2013-07-16 10:12:14

iOS多线程多线程概念多线程入门

2013-07-16 12:13:27

iOS多线程多线程概念GCD

2013-07-16 10:57:34

iOS多线程多线程概念多线程入门

2013-07-16 11:38:46

iOS多线程多线程概念GCD

2023-07-03 09:59:00

并发编程并发容器

2017-09-19 14:53:37

Java并发编程并发代码设计

2022-10-17 08:07:13

Go 语言并发编程

2010-11-17 11:31:22

Scala基础面向对象Scala

2011-07-03 10:16:45

Core Animat

2017-01-12 14:55:50

JavaScript编程

2010-07-20 13:32:25

Perl编程格式

2023-07-06 08:06:47

LockCondition公平锁

2011-12-29 13:31:15

Java

2021-08-05 07:58:22

并发编程包Task

2022-07-08 14:14:04

并发编程异步编程

2017-02-13 13:14:07

2010-09-14 13:22:17

Scala编程指南Scala

2023-01-18 23:20:25

编程开发
点赞
收藏

51CTO技术栈公众号