阐述综合布线系统信道富余量对传输性能的影响

网络 布线接入
本文主要介绍了结构化综合布线系统信道富余量对网络传输的影响,从背景、散射、外界干扰等方面充分阐述了综合布线系统信道富余量对网络传输性能的影响。

信道在单位时间内通过或传送的数据总量被我们称为信道传输量,但在实际的应用环境中,所有信道都将存在不同的损耗,我们将这种损耗称为信道富余量。在我们的综合布线系统中,有效利用信道富余量可以大幅提高网络传输性能。这里根据实验结果给出综合布线系统中信道富余量对网络传输性能的影响并分析其中的原因。

在最近的许多通信杂志和IT行业展览会上,结构化综合布线系统传输性能对数据网络传输比特误码率的影响成为引人注目的焦点。一般来讲,因阻抗不匹配而产生的信道回波损耗是导致高比特误码率的主要原因,而且回波损耗对所有的系统性能都有一定的影响,近端串扰衰耗的影响则更为严重。

标准规定的设计与测试要求信道必须符合应用性能,而这些信道却可能无法提供充足的富余量来担负许多未来高宽带网络需求应用。为了比较及验证6类布线方案比新近颁布的5e类标准能提供更好的传输质量及更快的网络速度,美国康普实验室最近利用三种高速、高密集信息量传输的应用系统进行了信道富余量实验。所选的应用系统是270 Mb/s的串行数字视频信号,100BASE-TX视频流和100BASE-TX数据文件传输。并把同护套大对数共享线缆接入实验中,模拟最差条件下的近端串扰的干扰网络传输环境。

这些实验的结果表明,在标准规定的要求下,使用有效高性能的信道富余量的结构化综合布线系统能够显著的提高网络传输速度。另外,通过实验还证明了使用6类布线系统能够为现在市场现存的应用系统提供更好的传输及使用性能。

背景

信道传输量的定义是指信道在一定时间内通过或传输数据的总量。信道***传输量仅在理想信道条件下方可实现,而在现实的环境下无法达到。所有信道都存在不同的损耗,因此信道只能在低于***工作能力或传输量的条件下工作。在通信系统或特定的局域网中,信道的设计必须考虑要能弥补这些损耗。

系统元器件以及周围环境等因素给信道的传输特性带来一定的损害,从而影响结构化综合布线系统的传输性能。一些干扰因素给结构化综合布线系统的信道传输性能带来负面影响,这些干扰因素被记入在1000BASE-T的IEEE 802.3ab千兆以太网标准中,现将其列出如下:

散射
外界干扰
延迟偏差
衰减
阻抗失配/回波损耗
近端串扰及远端串扰

所有这些潜在的干扰因素都可能导致信道比特误码,从而降低结构化综合布线系统的信道传输量。比特误码率是指错误接收比特与总传输比特的比率。在使用高速网络带宽及密集型信息传输应用中,需要***的比特误码来保证***传输性能。在数据应用中,较高的比特误码率、网络性能迟缓会导致信号重发。在视频应用中,较高比特差码率导致图像间断,丢失祯或产生白斑(雪花)。在任何应用领域,较高的比特误码率都会导致令人不满的性能。以下各节将探讨一些对比特误码率及其后传输量有影响的因素。

散射:

散射是位脉冲在通过信道时产生的扩散。它起因于每一比特与相邻比特的叠加,从而导致信道终端接收到的传输位发生错误。散射的影响通常被称为内扰,能够用可见图形来反映,以跳动来测量。信道缆线和连接线匹配性是产生散射的主要原因。对于像270Mb/s串行数字视频的数字传输应用而言,散射会增加比特误码率及降低信道的性能,造成接收端的图像分辨率降低。通常会把自适应性均衡电路加入通信硬件系统的电路接口处来补偿散射的影响。

外界干扰:

噪音通过信道附近的外部电场和磁场进入信道,这就是外界干扰。ESD或EFT的不定向发射是外界干扰来源的一种。需要注意的是,即使是设计和安装非常***的结构化综合布线系统信道,外界电磁场的转化仍然会对其起作用,影响比特误码率,并导致原有的不平衡因素由通信硬件电路与缆线接口处侵入信道,从而对系统性能造成不良效果。

延迟偏差:

延迟偏差是在多对线缆套内不同对线缆产生的传输速率差异,绞合率变化以及线对的绝缘结构限定了偏差,并以秒为单位。一些应用系统需要信号在复合双绞线上传输,并且同时到达信道末端的接收器。所以把延迟偏差减至最小非常重要。

利用双绞线进行现场传输的典型案例是在证券交易所内把金融信息发送到高分辨率显示屏。这类显示屏需要100兆赫兹以上的可用带宽和RGB同步模拟视频信号。过度的延迟偏差可能会导致色素分散,随着信道长度增加则会产生重影。1000BASE-T(千兆位以太网)是另一个需要使用UTP双绞线进行传输的案例。延迟偏差在IEEE802.3ab协议标准中被定义为在2MHz到100MHz频率之间,所有对组合之间双工信道的偏差差异不得超过50ns 。 衰减:

衰减是信号幅度通过信道时能量的减小。与散射类似,缆线与连接接插件是造成衰减的主要因素。IEEE 802.3协议中对1000BASE-T标准规定,衰减是接入损耗,双工信道的***衰减使用下面的公式计算:

接入损耗(f) = 2.1 f (0.529) + 0.4/f (dB) [f=1MHz to 100MHz]

信道衰减的不良影响可以通过考察模拟视频信号的传输效果来论证。过度衰减导致视频流中的低频亮度信号部分的强度低于高频色度信号部分,使得接收的影像灰暗,对比度过低。

阻抗失配/回波损耗:

阻抗失配/回波损耗发生在负载阻抗与设备内部阻抗不平衡的情况下。对结构化综合布线系统而言,这类损耗多出现于构成信道的组件没有适当匹配的情况下。这样会影响能源与负载间的***传输功率。对于使用混合功能接口电路的1000BASE-T的系统而言,将阻抗匹配失衡减至最小是非常重要的。混合功能常用来实现数据信息的全双工传送。

混合电路提供四对终端,信号由一个终端对进入后,从相邻两对分发出来,但却不能到达相对应的终端线对。设备电路与信道的阻抗匹配是相当重要的,否则产生回波,也就是反射的传输能量将以噪音的形式在接收端出现。将回波补偿电路并入1000BASE-T接口电路,目的是有效的抵制混合功能产生的回波影响。

1000BASE-T ,IEEE 802.3ab标准指出阻抗失配就像回波损耗一样用分贝来表示,即每一个特定频率段上的相关阻抗(100欧姆)。回波损耗是由于阻抗不匹配而产生的应用信号反射,是一个分数数值的比率。IEEE 802.3ab 标准记录了信道上的阻抗失配影响,并用以下公式表示阻抗失配的容限范围。

Return Loss (f)=15 (dB) {f= 1MHz to 20MHz}
Return Loss (f) =15 - 10log(f/20) (dB)
{f= 20MHz to 100MHz}

第二个公式允许在回波损耗适合值里有一个较宽的容限。例如,这个容限范就是标准规定的100 MHz频率下8dB的回波损耗。这个回波损耗等于100欧姆(-57欧姆到133欧姆)的阻抗失配。诸如1000BASE-T之类应用的能力可以容许很宽范围的阻抗失配。这表明,此类损害因素还没有像其他因素那样危及到布线传输性能。

近端串扰及远端串扰:

从一对或多对线缆到其他相邻线对上的信号耦合被称做串扰。近端串扰损耗被定义为:耦合信号与原来的传输信号从同一信道端被测量情况下,传输信号大小与耦合信号大小的比率。远端串扰损耗被定义为:耦合信号在原来传输信号相对另一端进行测量的情况下,传输信号大小与耦合信号大小的比率。近端串扰和远端串扰损耗同样是用分贝(dB)来表示的。

对于1000BASE-T等多线对传输系统来讲,把近端串扰最小化是非常关键的。每个1000BASE-T全双工信道接收器从与四对信道相连接的三个相邻传送器感受近端串扰。因此,在1000BASE-T传送系统中,引入近端串扰补偿以减少近端串扰的干扰。同样的方式,把远端串扰补偿引入1000BASE-T传送系统也可以降低远端串扰的干扰。但是,如果把远端串扰与近端串扰作的影响比较起来,就明显小的很,以至于可以忽略不计。另外,近端串扰干扰产生于相邻的的线缆之间,这些线缆不在同一护套内。近端串扰一般指来自于外在的近端串扰干扰,当线缆被紧紧束在一起的时产生。外在的近端串扰一般被视为外部干扰。

总而言之,结构化综合布线系统信道的传输性能被一些潜在干扰因素所影响。不管是近端串扰、远端串扰还是外部噪音产生的串扰,对比特误码率都有非常重要的影响,随之也殃及到结构化综合布线系统信道的传输性能。串扰就像其他影响结构化综合布线系统信道的损害因素一样,它可以蔓延到难以控制的地步并且影响更多的应用。

 

【编辑推荐】

  1. 深入分析局域网布线中光纤连接技术
  2. 综合布线数据中心统筹设计技术
  3. 中技源推出塑料光纤布线系统
  4. 重庆大剧院千点综合布线
  5. 09年中国综合布线市场的发展预测:过冬策略
责任编辑:王晓东 来源: 千家综合布线网
相关推荐

2009-10-15 10:11:22

综合布线系统信道余量

2009-10-15 11:04:25

综合布线系统

2014-08-25 13:48:24

布线双绞线

2011-01-19 13:51:05

综合布线光纤传输

2009-07-31 17:13:56

综合布线电缆位置

2009-10-19 15:10:42

综合布线系统

2011-04-12 10:52:43

布线系统

2009-10-10 13:58:24

综合布线系统

2009-11-05 16:45:52

WCF可靠性传输

2009-07-03 18:48:00

综合布线屏蔽性能

2009-08-02 17:21:56

综合布线系统保护

2011-04-11 14:46:34

机柜接地

2009-10-21 14:08:51

综合布线系统测试

2009-07-11 10:51:31

综合布线系统工程

2011-05-30 09:40:37

家用综合布线系统布线

2012-11-20 09:42:52

综合布线存储环境数据中心

2012-11-28 09:42:15

2015-08-18 14:07:34

综合布线

2013-03-18 16:29:53

综合布线系统布线系统错误综合布线

2009-10-15 12:54:09

综合布线系统
点赞
收藏

51CTO技术栈公众号