浅析商业智能BI的三个层次

数据库 商业智能
如何把数据转化为信息,使得业务人员能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。本文将向大家介绍商务智能的三个层次。

经过几年的积累,大部分中大型的企事业单位已经建立了比较完善的CRM、ERP、OA等基础信息化系统。这些系统的统一特点都是:通过业务人员或者用户的操作,最终对数据库进行增加、修改、删除等操作。上述系统可统一称为OLTP(Online Transaction Process,在线事务处理),指的就是系统运行了一段时间以后,必然帮助企事业单位收集大量的历史数据。但是,在数据库中分散、独立存在的大量数据对于业务人员来说,只是一些无法看懂的天书。业务人员所需要的是信息,是他们能够看懂、理解并从中受益的抽象信息。此时,如何把数据转化为信息,使得业务人员(包括管理者)能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。

如何把数据库中存在的数据转变为业务人员需要的信息?大部分的答案是报表系统。简单说,报表系统已经可以称作是商业智能了,它是BI的低端实现。

现在国外的企业,大部分已经进入了中端BI,叫做数据分析。有一些企业已经开始进入高端BI,叫做数据挖掘。而我国的企业,目前大部分还停留在报表阶段。

数据报表不可取代

传统的报表系统技术上已经相当成熟,大家熟悉的Excel、水晶报表、Reporting Service等都已经被广泛使用。但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多。

1. 数据太多,信息太少

密密麻麻的表格堆砌了大量数据,到底有多少业务人员仔细看每一个数据?到底这些数据代表了什么信息、什么趋势?级别越高的领导,越需要简明的信息。如果我是董事长,我可能只需要一句话:目前我们的情况是好、中还是差?

2. 难以交互分析、了解各种组合

定制好的报表过于死板。例如,我们可以在一张表中列出不同地区、不同产品的销量,另一张表中列出不同地区、不同年龄段顾客的销量。但是,这两张表无法回答诸如“华北地区中青年顾客购买数码相机类型产品的情况”等问题。业务问题经常需要多个角度的交互分析。

3. 难以挖掘出潜在的规则

报表系统列出的往往是表面上的数据信息,但是海量数据深处潜在含有哪些规则呢?什么客户对我们价值最大,产品之间相互关联的程度如何?越是深层的规则,对于决策支持的价值越大,但是,也越难挖掘出来。

4. 难以追溯历史,数据形成孤岛

业务系统很多,数据存在于不同地方。太旧的数据(例如一年前的数据)往往被业务系统备份出去,导致宏观分析、长期历史分析难度很大。

因此,随着时代的发展,传统报表系统已经不能满足日益增长的业务需求了,企业期待着新的技术。目前国内报表系统领先者润乾报表的创新技术能较好的满足繁杂的业务需求。数据分析和数据挖掘的时代正在来临。值得注意的是,数据分析和数据挖掘系统的目的是带给我们更多的决策支持价值,并不是取代数据报表。报表系统依然有其不可取代的优势,并且将会长期与数据分析、挖掘系统一起并存下去。

八维以上的数据分析

如果说OLTP侧重于对数据库进行增加、修改、删除等日常事务操作,OLAP(Online Analytics Process,在线分析系统)则侧重于针对宏观问题,全面分析数据,获得有价值的信息。

为了达到OLAP的目的,传统的关系型数据库已经不够了,需要一种新的技术叫做多维数据库。

多维数据库的概念并不复杂。举一个例子,我们想描述2003年4月份可乐在北部地区销售额10万元时,牵扯到几个角度:时间、产品、地区。这些叫做维度。至于销售额,叫做度量值。当然,还有成本、利润等。

除了时间、产品和地区,我们还可以有很多维度,例如客户的性别、职业、销售部门、促销方式等等。实际上,使用中的多维数据库可能是一个8维或者15维的立方体。

虽然结构上15维的立方体很复杂,但是概念上非常简单。

数据分析系统的总体架构分为四个部分:源系统、数据仓库、多维数据库、客户端。

◆源系统:包括现有的所有OLTP系统,搭建BI系统并不需要更改现有系统。

◆数据仓库:数据大集中,通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次,当然是自动的。数据仓库依然建立在关系型数据库上,往往符合叫做“星型结构”的模型。

◆多维数据库:数据仓库的数据经过多维建模,形成了立方体结构。每一个立方体描述了一个业务主题,例如销售、库存或者财务。

◆客户端:好的客户端软件可以把多维立方体中的信息丰富多彩地展现给用户。

数据分析案例

在实际的案例中,我们利用Oracle 9i搭建了数据仓库,Microsoft Analysis Service 2000搭建了多维数据库,ProClarity 6.0 作为客户端分析软件。

分解树好像一个组织图。分解树在回答以下问题时很有效:

◆在指定的产品组内,哪种产品有最高的销售额?

◆在特定的产品种类内,各种产品间的销售额分布如何?

◆哪个销售人员完成了最高百分比的销售额?

◆数据挖掘看穿你的需求

广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。

关联销售案例

美国的超市有这样的系统:当你采购了一车商品结账时,售货员小姐扫描完了你的产品后,计算机上会显示出一些信息,然后售货员会友好地问你:我们有一种一次性纸杯正在促销,位于F6货架上,您要购买吗?

这句话决不是一般的促销。因为计算机系统早就算好了,如果你的购物车中有餐巾纸、大瓶可乐和沙拉,则86%的可能性你要买一次性纸杯。结果是,你说,啊,谢谢你,我刚才一直没找到纸杯。

这不是什么神奇的科学算命,而是利用数据挖掘中的关联规则算法实现的系统。

每天,新的销售数据会进入挖掘模型,与过去N天的历史数据一起,被挖掘模型处理,得到当前最有价值的关联规则。同样的算法,分析网上书店的销售业绩,计算机可以发现产品之间的关联以及关联的强弱。

数据报表、数据分析、数据挖掘是商业智能BI的三个层面。我们相信未来几年的趋势是:越来越多的企业在数据报表的基础上,会进入数据分析与数据挖掘的领域。商业智能所带来的决策支持功能,会给我们带来越来越明显的效益。

【编辑推荐】

  1. 商务智能(BI)的四大关键技术
  2. 简析商务智能系统的生命周期
  3. 浅析商务智能的五种类型
责任编辑:佚名 来源: BlogBus
相关推荐

2022-10-13 14:15:35

商业智能大数据工具

2020-06-11 09:00:27

SDN网络架构网络

2011-07-05 09:16:43

项目经理

2011-06-14 10:35:15

性能优化

2010-01-05 10:09:56

Linux商业智能BI

2010-09-01 09:08:31

VMwareIT即服务

2013-04-28 10:35:26

2021-09-16 15:41:59

机器学习数据科学算法

2022-07-25 17:37:05

数字化转型资产信息化

2018-08-15 10:48:45

云计算存储虚拟化

2010-07-06 15:40:49

SQL Server

2022-06-15 16:23:09

智能公寓物联网

2010-12-07 16:48:42

2016-04-18 11:47:18

数据分析用户留存数据驱动

2010-12-08 09:47:22

用户体验

2021-04-10 16:09:18

人工智能AI深度学习

2010-08-26 16:54:31

DB2字符集

2009-07-02 15:19:52

Java EE的三个层

2010-12-07 16:39:41

2011-05-13 10:15:35

DB2专家王云商业智能BI
点赞
收藏

51CTO技术栈公众号