
回复
# 全功能安装(RAG/代码解释器/GUI支持)
pip install -U "qwen-agent[rag,code_interpreter,python_executor,gui]"
# 简约安装版本
pip install -U qwen-agent
方法 1:官方服务
export DASHSCOPE_API_KEY='your-api-key'
方法 2:本地部署(vLLM 示例)
from vllm import LLM, SamplingParams
llm = LLM(model="Qwen2-7B-Chat")
from qwen_agent.tools.base import BaseTool, register_tool
import json5
@register_tool('calculate')
class Calculator(BaseTool):
description = '基础运算计算器'
parameters = [{'name': 'formula', 'type': 'string'}]
def call(self, params: str) -> float:
return eval(json5.loads(params)['formula'])
# 调用示例
calc = Calculator()
print(calc.call('{"formula": "(3 + 5) * 2"}')) # 输出 16.0
from qwen_agent.agents import Assistant
class HistoryAssistant(Assistant):
def _postprocess_messages(self, messages):
return messages[-10:] # 保留最近5轮对话
assistant = HistoryAssistant(llm={'model': 'qwen-max'})
from qwen_agent.agents import Assistant
from qwen_agent.tools import BaseTool, register_tool
import requests
import json5
@register_tool('city_info')
class CityInfoTool(BaseTool):
description = "城市基础信息查询"
parameters = [{'name': 'name', 'type': 'string'}]
def call(self, params):
city = json5.loads(params)['name']
response = requests.get(f"https://api.example.com/cities/{city}")
return response.json()
# 配置助手
assistant = Assistant(
llm={'model': 'qwen-max'},
function_list=['city_info','code_interpreter'],
system_message="你是一个城市百科助手"
)
# 测试查询
response = assistant.run([{'role': 'user', 'content': '上海有多少个行政区?'}])
print(response[-1]['content'])
执行流程:
import urllib
from qwen_agent.agents import Assistant
assistant = Assistant(
function_list=['code_interpreter'],
system_message="图像处理专家"
)
def process_image(prompt):
messages = [{'role':'user', 'content': prompt}]
for resp in assistant.run(messages):
if 'function_call' in resp:
code = resp['function_call']['arguments']
exec(code) # 示例简化执行
return resp[-1]['content']
process_image('将https://example.com/image.jpg的水平宽度扩大1.5倍')
from qwen_agent import retrieve
# 构建知识库
retrieve.build_index('documents/')
class DocQA(Assistant):
def _preprocess(self, query):
contexts = retrieve.search(query)
return f"根据文档:{contexts}\n回答:{query}"
qa = DocQA(llm={'model': 'qwen-max-longcontext'})
from qwen_agent.gui import WebUI
WebUI(assistant).launch(server_name='0.0.0.0', server_port=7860)
class CustomerService(Assistant):
def __init__(self):
super().__init__(
system_message="你是XX公司客服,回答范围限于产品功能和订单查询",
function_list=[product_lookup, order_status]
)
def _validate_query(self, query):
if '价格' in query:
return "具体产品价格请访问官网查询"
return super()._validate_query(query)
@register_tool('data_analysis')
class DataAnalyzer:
def call(self, params):
df = pd.read_csv(params['file'])
return df.describe().to_markdown()
assistant = Assistant(function_list=['data_analysis', 'code_interpreter'])
# 开启调试模式
assistant = Assistant(verbose=True)
# 性能监控
from qwen_agent.monitor import perf_counter
@perf_counter
def critical_function():
pass
本文转载自公众号九歌AI大模型 作者:九歌AI
原文链接:https://mp.weixin.qq.com/s/PD5xisqJ-qzmiD9X-KgEBQ